Higashitani A, Greenstein D, Hirokawa H, Asano S, Horiuchi K
Department of Microbial Genetics, National Institute of Genetics, Mishima, Japan.
J Mol Biol. 1994 Apr 8;237(4):388-400. doi: 10.1006/jmbi.1994.1242.
The core origin for plus strand DNA replication of filamentous bacteriophage f1 binds the initiator protein (gpII), which subsequently introduces a specific nick in the plus strand. The core origin consists of a nicking region and a binding region. The binding of gpII occurs in two steps, forming a binding intermediate (complex I) and a functional complex for nicking (complex II). Results of gel retardation experiments using circularly permuted DNA fragments and direct visualization by electron microscopy show that gpII induces successive bends within the binding region upon formation of the complexes. We show that gpII binding induces duplex melting in the nicking region using KMnO4 modification of unpaired thymidine residues as a probe for melting. Origin binding occurred in the absence of superhelicity of DNA and Mg2+, whereas duplex melting required superhelical DNA, but not Mg2+. Deletion analyses indicated that hypothetical formation of a cruciform around the nicking site is not necessary for either melting or nicking. A mutation in gpII resulted in stimulation of duplex melting and nicking without showing obvious effects on bending. This suggests that the mechanism of melting involves local interaction between gpII and the nicking region. Furthermore, using synthetic oligonucleotide substrates, we show that the nicking reaction takes place efficiently when the nicking region is single-stranded and the binding region is double-stranded. These results indicate that the nicking reaction is preceded by an ordered series of protein-induced DNA-conformational changes: successive bending of the origin upon gpII binding, followed by duplex melting that requires negative superhelicity.
丝状噬菌体f1正链DNA复制的核心起始位点与引发蛋白(gpII)结合,随后引发蛋白在正链上引入一个特定的切口。核心起始位点由一个切口区域和一个结合区域组成。gpII的结合分两步进行,形成一个结合中间体(复合物I)和一个用于切口的功能复合物(复合物II)。使用环形置换DNA片段进行的凝胶阻滞实验结果以及电子显微镜直接观察表明,在复合物形成过程中,gpII在结合区域内诱导连续的弯曲。我们使用未配对胸腺嘧啶残基的高锰酸钾修饰作为双链解链的探针,表明gpII结合在切口区域诱导双链解链。起始位点结合在没有DNA超螺旋和Mg2+的情况下发生,而双链解链需要超螺旋DNA,但不需要Mg2+。缺失分析表明,在切口位点周围假设形成十字形对于解链或切口都不是必需的。gpII中的一个突变导致双链解链和切口的刺激,而对弯曲没有明显影响。这表明解链机制涉及gpII与切口区域之间的局部相互作用。此外,使用合成寡核苷酸底物,我们表明当切口区域为单链且结合区域为双链时,切口反应能有效发生。这些结果表明,切口反应之前是一系列由蛋白质诱导的有序DNA构象变化:gpII结合后起始位点的连续弯曲,随后是需要负超螺旋的双链解链。