Doebeli M
Zoologisches Institut der Universität, Basel, Switzerland.
J Theor Biol. 1994 Feb 7;166(3):325-30. doi: 10.1006/jtbi.1994.1029.
In modelling single species with discrete, non-overlapping generations, one usually assumes that the density at time t + .1 is a function of the density at time t: Nt+1 = f(Nt). The dynamical behaviour of this system depends on the parameters in the function f. It commonly changes, as a parameter increases, from a stable equilibrium through a series of bifurcations into stable cycles, to chaotic motion. It is implicit in the assumptions of the model that the population consists of identical individuals. In this paper it is shown that variation within the population can lead to a different route to chaos. Invasion of a mutant phenotype into a resident population can elicit intermittency. This kind of chaotic behaviour consists of regular motion most of the time with short intermittent periods in which the system fluctuates wildly.
在对具有离散、不重叠世代的单物种进行建模时,通常假设时间t + 1时的密度是时间t时密度的函数:Nt+1 = f(Nt)。该系统的动力学行为取决于函数f中的参数。随着参数增加,它通常会从稳定平衡通过一系列分岔转变为稳定周期,再到混沌运动。该模型的假设隐含着种群由相同个体组成。本文表明,种群内部的变异会导致通往混沌的不同路径。突变表型侵入常驻种群会引发间歇性。这种混沌行为大部分时间由规则运动组成,其间有短暂的间歇性周期,系统在这些周期中会剧烈波动。