Suppr超能文献

组氨酸取代确定了一个表面位置,并赋予钾离子通道对铯离子的选择性。

Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.

作者信息

De Biasi M, Drewe J A, Kirsch G E, Brown A M

机构信息

Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030.

出版信息

Biophys J. 1993 Sep;65(3):1235-42. doi: 10.1016/S0006-3495(93)81154-8.

Abstract

The amino acid located at position 369 is a key determinant of the ion conduction pathway or pore of the voltage-gated K+ channels, Kv2.1 and a chimeric channel, CHM, constructed by replacing the pore region of Kv2.1 with that of Kv3.1. To determine the orientation of residue 369 with respect to the aqueous lumen of the pore, the nonpolar Ile at 369 in Kv2.1 was replaced with a basic His. This substitution produced a Cs(+)-selective channel with Cs+:K+ permeability ratio of 4 compared to 0.1 in the wild type. Block by external tetraethylammonium (TEA) was reduced about 20-fold, while block by internal TEA was unaffected. External protons and Zn2+, that are known to interact with the imidazole ring of His, blocked the mutant channel much more effectively than the wild type channel. The blockade by Zn2+ and protons was voltage-independent, and the proton blockade had a pKa of about 6.5, consistent with the pKa for His in solution. The histidyl-specific reagent diethylpyrocarbonate produced greatly exaggerated blockade of the mutated channel compared to the wild type. The residue at position 369 appears to form part of the binding site for external TEA and to influence the selectivity for monovalent cations. We suggest that the imidazole side-chain of His369 is exposed to the aqueous lumen at a surface position near the external mouth of the pore.

摘要

位于第369位的氨基酸是电压门控钾通道Kv2.1以及通过用Kv3.1的孔区域替换Kv2.1的孔区域构建的嵌合通道CHM的离子传导途径或孔的关键决定因素。为了确定369位残基相对于孔的水腔的取向,将Kv2.1中369位的非极性异亮氨酸替换为碱性组氨酸。这种替换产生了一种Cs(+)选择性通道,其Cs+:K+渗透率比为4,而野生型为0.1。外部四乙铵(TEA)的阻断降低了约20倍,而内部TEA的阻断不受影响。已知与组氨酸的咪唑环相互作用的外部质子和Zn2+对突变通道的阻断比野生型通道更有效。Zn2+和质子的阻断与电压无关,质子阻断的pKa约为6.5,与溶液中组氨酸的pKa一致。与野生型相比,组氨酸特异性试剂焦碳酸二乙酯对突变通道的阻断作用大大增强。369位的残基似乎形成了外部TEA结合位点的一部分,并影响单价阳离子的选择性。我们认为His369的咪唑侧链在靠近孔外口的表面位置暴露于水腔中。

相似文献

1
Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.
Biophys J. 1993 Sep;65(3):1235-42. doi: 10.1016/S0006-3495(93)81154-8.
2
The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
Biophys J. 1994 Dec;67(6):2261-4. doi: 10.1016/S0006-3495(94)80710-6.
4
Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
Biophys J. 1995 Aug;69(2):428-34. doi: 10.1016/S0006-3495(95)79915-5.
5
Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels.
Biophys J. 1995 May;68(5):1804-13. doi: 10.1016/S0006-3495(95)80357-7.
8
A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch.
Biophys J. 1992 Apr;62(1):136-43; discussion 143-4. doi: 10.1016/S0006-3495(92)81800-3.
10
Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels.
Biophys J. 1996 Jul;71(1):209-19. doi: 10.1016/S0006-3495(96)79217-2.

引用本文的文献

3
Histidines are responsible for zinc potentiation of the current in KDC1 carrot channels.
Biophys J. 2004 Jan;86(1 Pt 1):224-34. doi: 10.1016/S0006-3495(04)74098-9.
6
External K(+) relieves the block but not the gating shift caused by Zn(2+) in human Kv1.5 potassium channels.
J Physiol. 2001 Apr 15;532(Pt 2):349-58. doi: 10.1111/j.1469-7793.2001.0349f.x.
7
A small domain in the N terminus of the regulatory alpha-subunit Kv2. 3 modulates Kv2.1 potassium channel gating.
J Neurosci. 1999 Aug 15;19(16):6865-73. doi: 10.1523/JNEUROSCI.19-16-06865.1999.
8
Proton and zinc effects on HERG currents.
Biophys J. 1999 Jul;77(1):282-98. doi: 10.1016/S0006-3495(99)76889-X.
9
Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels.
J Gen Physiol. 1998 Oct;112(4):457-74. doi: 10.1085/jgp.112.4.457.
10
Proton probing of the charybdotoxin binding site of Shaker K+ channels.
J Gen Physiol. 1998 Mar;111(3):441-50. doi: 10.1085/jgp.111.3.441.

本文引用的文献

1
Cation selective glass electrodes and their mode of operation.
Biophys J. 1962 Mar;2(2 Pt 2):259-323. doi: 10.1016/s0006-3495(62)86959-8.
2
Inactivation determined by a single site in K+ pores.
Pflugers Arch. 1993 Jan;422(4):354-63. doi: 10.1007/BF00374291.
5
Primary structure and functional expression of a mouse inward rectifier potassium channel.
Nature. 1993 Mar 11;362(6416):127-33. doi: 10.1038/362127a0.
6
Cloning and expression of an inwardly rectifying ATP-regulated potassium channel.
Nature. 1993 Mar 4;362(6415):31-8. doi: 10.1038/362031a0.
7
Divalent cations and the activation kinetics of potassium channels in squid giant axons.
J Gen Physiol. 1982 Jun;79(6):965-96. doi: 10.1085/jgp.79.6.965.
9
The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.
J Gen Physiol. 1967 May;50(5):1287-302. doi: 10.1085/jgp.50.5.1287.
10
Hydrogen ion buffers for biological research.
Biochemistry. 1966 Feb;5(2):467-77. doi: 10.1021/bi00866a011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验