Suppr超能文献

一种基于氧化还原的机制,用于解释一氧化氮及相关亚硝基化合物的神经保护和神经破坏作用。

A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.

作者信息

Lipton S A, Choi Y B, Pan Z H, Lei S Z, Chen H S, Sucher N J, Loscalzo J, Singel D J, Stamler J S

机构信息

Laboratory of Cellular & Molecular Neuroscience, Children's Hospital, Boston, Massachusetts.

出版信息

Nature. 1993 Aug 12;364(6438):626-32. doi: 10.1038/364626a0.

Abstract

Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

摘要

一氧化氮(NO)的同类物具有神经保护和神经破坏作用。为了解决这一明显的矛盾,我们考虑了具有NO不同氧化还原状态的化合物对神经元的影响:一氧化氮(NO·)和亚硝基离子(NO⁺)。由NO·供体产生或在NMDA(N-甲基-D-天冬氨酸)受体激活后内源性合成的一氧化氮可导致神经毒性。在此,我们报告,NO·介导的神经毒性至少部分是由与超氧阴离子(O₂·⁻)反应产生的,显然会导致过氧亚硝酸盐(ONOO⁻)的形成,而不仅仅是由NO·单独导致的。相比之下,NO的神经保护作用源于与受体氧化还原调节位点的硫醇基团反应,从而下调NMDA受体活性。此反应不是由NO·本身介导的,而是在支持NMDA受体硫醇S-亚硝基化的条件下发生(NO⁺的反应或转移)。此外,NO的氧化还原多功能性使其能够通过周围氧化还原环境的变化从神经保护物质转化为神经毒性物质。NO这种复杂氧化还原化学的细节可能为在中枢神经系统中利用神经保护作用并避免神经毒性提供一种机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验