Hagenah M, Böhnke M
Universitäts-Augenklinik, Hamburg, Germany.
Cryobiology. 1993 Aug;30(4):396-406. doi: 10.1006/cryo.1993.1039.
In an experimental study using porcine corneas we investigated the influence of several variables of freeze-thaw trauma on survival of corneal endothelial cells after corneal cryopreservation employing chondroitin sulfate as a cryoprotectant. We examined the influence of: (1) the concentration of chondroitin sulfate in the cryopreservation medium, (2) the concentration of fetal calf serum in the cryopreservation medium, (3) the cooling rate, and (4) the preincubation period in the cryopreservation medium before freezing. Controls consisted of corneas cryopreserved in culture medium without cryoprotectants and corneas frozen in dimethyl sulfoxide (Me2SO) by the method of Capella et al. (Preservation of viable corneal tissue. Cryobiology, 2, 116-121, 1965). Morphological evaluation was performed by determining endothelial cell density after staining with alizarin red S and trypan blue. Morphological evaluation was not performed directly after thawing but after a subsequent storage period in organ culture at 31 degrees C in order to detect latent cell damage after freeze-thaw trauma. The group that yielded the best endothelial cell density was evaluated in perfusion chamber experiments in order to measure the functional integrity of the tissue. Controls included corneoscleral rims from freshly slaughtered pigs, corneas stored in organ culture for 1 day, and fresh corneas mechanically denuded of endothelium. It was demonstrated that corneas that had been cryopreserved in MEM medium containing 2% chondroitin sulfate and 20% fetal calf serum with a cooling rate of 1 degree C/min displayed the highest endothelial cell density (2430 cells/mm2, SO = 383, n = 15) compared with freshly dissected corneas (3395 cells/mm2, SD = 200, n = 48). Control corneas frozen by the method of Capella et al. demonstrated only a poor outcome. We conclude that in our experimental environment, corneal cryopreservation with chondroitin sulfate provides higher corneal endothelial cell densities than corneas preserved by conventional methods. Moreover, even slight changes in variables that affect the tissue in the freeze-thaw cycle have a major impact on corneal endothelial cell survival after cryopreservation.
在一项使用猪角膜的实验研究中,我们研究了冻融损伤的几个变量对角膜冷冻保存后角膜内皮细胞存活的影响,其中使用硫酸软骨素作为冷冻保护剂。我们考察了以下因素的影响:(1)冷冻保存培养基中硫酸软骨素的浓度;(2)冷冻保存培养基中胎牛血清的浓度;(3)降温速率;(4)冷冻前在冷冻保存培养基中的预孵育时间。对照组包括在不含冷冻保护剂的培养基中冷冻保存的角膜,以及采用卡佩拉等人的方法(《存活角膜组织的保存。低温生物学》,第2卷,第116 - 121页,1965年)在二甲基亚砜(Me2SO)中冷冻的角膜。通过用茜素红S和台盼蓝染色后测定内皮细胞密度进行形态学评估。形态学评估不是在解冻后立即进行,而是在随后于31℃的器官培养中储存一段时间后进行,以便检测冻融损伤后的潜在细胞损伤。对产生最佳内皮细胞密度的组进行灌注室实验,以测量组织的功能完整性。对照组包括刚屠宰猪的角膜缘、在器官培养中储存1天的角膜以及机械去除内皮的新鲜角膜。结果表明,与新鲜解剖的角膜(3395个细胞/mm²,SD = 200,n = 48)相比,在含有2%硫酸软骨素和20%胎牛血清的MEM培养基中以1℃/min的降温速率冷冻保存的角膜显示出最高的内皮细胞密度(2430个细胞/mm²,SO = 383,n = 15)。采用卡佩拉等人的方法冷冻的对照角膜结果很差。我们得出结论,在我们的实验环境中,用硫酸软骨素进行角膜冷冻保存比传统方法保存的角膜具有更高的角膜内皮细胞密度。此外,即使在冻融循环中影响组织的变量有轻微变化,也会对冷冻保存后角膜内皮细胞的存活产生重大影响。