Suppr超能文献

用近端等速表面积法计算体积流量:使用彩色多普勒零基线偏移的简化方法。

Calculation of volume flow rate by the proximal isovelocity surface area method: simplified approach using color Doppler zero baseline shift.

作者信息

Utsunomiya T, Doshi R, Patel D, Mehta K, Nguyen D, Henry W L, Gardin J M

机构信息

Department of Medicine, University of California, Irvine, Orange.

出版信息

J Am Coll Cardiol. 1993 Jul;22(1):277-82. doi: 10.1016/0735-1097(93)90844-q.

Abstract

OBJECTIVES

The goal of this study was to develop an accurate, simplified proximal isovelocity surface area (PISA) method for calculating volume flow rate using lower blue-red interface velocity produced by a color Doppler zero baseline shift technique.

BACKGROUND

The Doppler color proximal isovelocity surface area method has been shown to be accurate for calculating the volume flow rate (Q) across a narrowed orifice by the formula Q = PISA x Blue-red interface velocity. A hemispheric model is generally used to calculate proximal isovelocity surface area (PISA = 2 pi a2, where a = the radius corresponding to the blue-red interface velocity). Although a hemispheric model is simple, requiring measurement of one radius, it may underestimate the actual volume flow rate because, in the general case, the shape of a proximal isovelocity surface area is hemielliptic. Although a hemielliptic model is generally more accurate for calculating proximal isovelocity surface area, it is more complex, requiring measurement of two orthogonal radii.

METHODS

Sixteen in vitro constant flow model studies were performed using planar circular orifices (diameter range 6 to 16 mm). The blue-red interface velocity was changed from 3 to 54 cm/s using color Doppler zero baseline shift.

RESULTS

  1. With decreasing blue-red interface velocity, the size of the proximal isovelocity surface area was increased, and its shape changed from hemielliptic to hemispheric. 2) With the blue-red interface velocity in the range 11 to 15 cm/s, the proximal isovelocity surface area became nearly hemispheric; however, it was difficult to determine the blue-red interface radius at a blue-red interface velocity < 10 cm/s because of interface fluctuations. 3) Calculated volume flow rate using the hemispheric proximal isovelocity surface area model with a single radius was relatively accurate at a blue-red interface velocity of 11 to 15 cm/s (mean percent difference from actual volume flow rate was -3.6%).

CONCLUSIONS

Because the shape of the proximal isovelocity surface area is nearly hemispheric at a blue-red interface velocity of 11 to 15 cm/s, volume flow rate can be accurately calculated in this proximal isovelocity surface area interface velocity range (produced by zero baseline shift) by measuring a single-interface radius. This approach should be clinically useful for calculating the volume flow rate across stenotic and regurgitant valves and across shunt defects.

摘要

目的

本研究的目的是开发一种准确、简化的近端等速表面积(PISA)方法,用于使用彩色多普勒零基线移位技术产生的较低蓝红界面速度来计算容积流量。

背景

多普勒彩色近端等速表面积法已被证明通过公式Q = PISA×蓝红界面速度来计算通过狭窄孔口的容积流量(Q)是准确的。通常使用半球模型来计算近端等速表面积(PISA = 2πa²,其中a = 对应于蓝红界面速度的半径)。尽管半球模型简单,只需要测量一个半径,但它可能会低估实际容积流量,因为在一般情况下,近端等速表面积的形状是半椭圆形的。虽然半椭圆形模型在计算近端等速表面积时通常更准确,但它更复杂,需要测量两个正交半径。

方法

使用平面圆形孔口(直径范围为6至16毫米)进行了16项体外恒定流量模型研究。使用彩色多普勒零基线移位将蓝红界面速度从3厘米/秒改变到54厘米/秒。

结果

1)随着蓝红界面速度降低,近端等速表面积的大小增加,其形状从半椭圆形变为半球形。2)当蓝红界面速度在11至15厘米/秒范围内时,近端等速表面积几乎变为半球形;然而,由于界面波动,在蓝红界面速度<10厘米/秒时难以确定蓝红界面半径。3)在蓝红界面速度为11至15厘米/秒时,使用具有单个半径的半球形近端等速表面积模型计算的容积流量相对准确(与实际容积流量的平均百分比差异为-3.6%)。

结论

由于在蓝红界面速度为11至15厘米/秒时近端等速表面积的形状几乎是半球形,因此在该近端等速表面积界面速度范围内(由零基线移位产生),通过测量单个界面半径可以准确计算容积流量。这种方法在临床上对于计算通过狭窄和反流瓣膜以及分流缺损处的容积流量应该是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验