Fiala J C, Grossberg S, Bullock D
Department of Cognitive and Neural Systems, Boston University, Massachusetts 02215-2411, USA.
J Neurosci. 1996 Jun 1;16(11):3760-74. doi: 10.1523/JNEUROSCI.16-11-03760.1996.
To understand how the cerebellum adaptively times the classically conditioned nictitating membrane response (NMR), a model of the metabotropic glutamate receptor (mGluR) second messenger system in cerebellar Purkinje cells is constructed. In the model, slow responses, generated postsynaptically by mGluR-mediated phosphoinositide hydrolysis and calcium release from intracellular stores, bridge the interstimulus interval (ISI) between the onset of parallel fiber activity associated with the conditioned stimulus (CS) and climbing fiber activity associated with unconditioned stimulus (US) onset. Temporal correlation of metabotropic responses and climbing fiber signals produces persistent phosphorylation of both AMPA receptors and Ca(2+)-dependent K+ channels. This is responsible for long-term depression (LTD) of AMPA receptors. The phosphorylation of Ca(2+)-dependent K+ channels leads to a reduction in baseline membrane potential and a reduction of Purkinje cell population firing during the CS-US interval. The Purkinje cell firing decrease disinhibits cerebellar nuclear cells, which then produce an excitatory response corresponding to the learned movement. Purkinje cell learning times the response, whereas nuclear cell learning can calibrate it. The model reproduces key features of the conditioned rabbit NMR: Purkinje cell population response is timed properly; delay conditioning occurs for ISIs of up to 4 sec, whereas trace conditioning occurs only at shorter ISIs; mixed training at two different ISIs produces a double-peaked response; and ISIs of 200-400 msec produce maximal responding. Biochemical similarities between timed cerebellar learning and photoreceptor transduction, and circuit similarities between the timed cerebellar circuit and a timed dentate-CA3 hippocampal circuit, are noted.
为了理解小脑如何适应性地对经典条件性瞬膜反应(NMR)进行计时,构建了一个小脑浦肯野细胞代谢型谷氨酸受体(mGluR)第二信使系统的模型。在该模型中,由mGluR介导的磷酸肌醇水解和细胞内钙库释放所产生的突触后慢反应,在与条件刺激(CS)相关的平行纤维活动开始和与非条件刺激(US)开始相关的攀缘纤维活动之间的刺激间隔(ISI)上架起了桥梁。代谢型反应与攀缘纤维信号的时间相关性导致AMPA受体和Ca(2+)依赖性钾通道的持续磷酸化。这导致了AMPA受体的长时程抑制(LTD)。Ca(2+)依赖性钾通道的磷酸化导致基线膜电位降低以及在CS-US间隔期间浦肯野细胞群体放电减少。浦肯野细胞放电减少解除了对小脑核细胞的抑制,然后小脑核细胞产生与学习到的运动相对应的兴奋性反应。浦肯野细胞的学习对反应进行计时,而核细胞的学习可以对其进行校准。该模型重现了条件性兔NMR的关键特征:浦肯野细胞群体反应计时正确;对于长达4秒的ISI会出现延迟条件反射,而痕迹条件反射仅在较短的ISI时出现;在两个不同的ISI进行混合训练会产生双峰反应;200 - 400毫秒的ISI会产生最大反应。文中还提到了定时小脑学习与光感受器转导之间的生化相似性,以及定时小脑回路与定时齿状回 - CA3海马回路之间的电路相似性。