Suppr超能文献

Ras催化的GTP水解:模型研究的新视角。

Ras-catalyzed hydrolysis of GTP: a new perspective from model studies.

作者信息

Maegley K A, Admiraal S J, Herschlag D

机构信息

Department of Biochemistry, Beckman Center, Stanford University, CA 94305-5307, USA.

出版信息

Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8160-6. doi: 10.1073/pnas.93.16.8160.

Abstract

Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.

摘要

尽管通过Ras蛋白进行信号转导在生物学和医学上具有重要意义,并且对野生型和突变型Ras蛋白进行了大量的动力学和结构研究,但Ras催化GTP水解的机制仍存在争议。我们采用不同的方法来解决这个问题:分析GTP的非催化水解,并将由此获得的认识应用于Ras催化的反应。从这个化学角度对先前的机制提议进行评估表明,由通用碱从进攻水分子中夺取质子以及稳定γ-磷酰氧原子上的电荷发展不会起到催化作用。相反,该分析将注意力集中在GDP离去基团上,包括GTP的β-γ桥氧,该原子在从基态到过渡态的过程中电荷变化最大。这导致了一个新的催化提议,即在相对于基态的过渡态中,活性位点内从Gly-13的主链酰胺到该桥氧的氢键得到加强,该活性位点提供了与过渡态互补的模板。活性位点赖氨酸Lys-16与β-非桥连磷酰氧的增强的过渡态相互作用以及将亲核水分子和γ-磷酰基团相互定位的相互作用网络也可能有助于催化作用。据推测,Ras的GAP激活的GTPase活性的很大一部分源于β-γ桥氧与GAP反式提供的Arg侧链的额外相互作用。预计关于Ras和相关G蛋白的结论将更广泛地适用于其他催化磷酰基(-PO(3)2-)转移的酶,包括激酶和磷酸酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/707e/38640/5801585c73a5/pnas01520-0017-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验