Suppr超能文献

Face processing: human perception and principal components analysis.

作者信息

Hancock P J, Burton A M, Bruce V

机构信息

Department of Psychology, University of Stirling, Scotland.

出版信息

Mem Cognit. 1996 Jan;24(1):21-40.

PMID:8822156
Abstract

Principal components analysis (PCA) of face images is here related to subjects' performance on the same images. In two experiments subjects were shown a set of faces and asked to rate them for distinctiveness. They were subsequently shown a superset of faces and asked to identify those that had appeared originally. Replicating previous work, we found that hits and false positives (FPs) did not correlate: Those faces easy to identify as being "seen" were unrelated to those faces easy to reject as being "unseen." PCA was performed on three data sets: (1) face images with eye position standardized, (2) face images morphed to a standard template to remove shape information, and (3) the shape information from faces only. Analyses based on PCA of shape-free faces gave high predictions of FPs, whereas shape information itself contributed only to hits. Furthermore, whereas FPs were generally predictable from components early in the PCA, hits appeared to be accounted for by later components. We conclude that shape and "texture" (the image-based information remaining after morphing) may be used separately by the human face processing system, and that PCA of images offers a useful tool for understanding this system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验