Suppr超能文献

弱连接神经振荡器的突触组织与动力学特性。I. 一个典型模型的分析

Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

作者信息

Hoppensteadt F C, Izhikevich E M

机构信息

Systems Science Center, Arizona State University, Tempe, 85287-7606, USA.

出版信息

Biol Cybern. 1996 Aug;75(2):117-27. doi: 10.1007/s004220050279.

Abstract

We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this point of view. The theory developed here casts some light on relations between synaptic organization and functional properties of oscillatory networks. The major advantage of our approach is that we obtain results about all networks of neural oscillators, including the real brain. The major drawback is that our findings are valid only when the brain operates near a critical regime, viz. for a multiple Andronov-Hopf bifurcation.

摘要

我们研究了多个安德罗诺夫 - 霍普夫分岔点附近的神经振荡器弱连接网络。我们分析了网络的突触组织(解剖结构)与其动力学特性(功能)之间的关系。我们的主要假设是:(1)每个神经振荡器由两类神经元组成;兴奋性神经元和抑制性神经元;(2)每类神经元的活动由一个标量(一维)变量描述;(3)每个神经振荡器接近一个非退化超临界安德罗诺夫 - 霍普夫分岔点;(4)神经振荡器之间的突触连接较弱。所有满足这些假设的神经网络都由同一个动力学系统支配,我们称之为典范模型。对典范模型的研究表明:(1)一个神经振荡器只能与那些自然频率大致相同的振荡器进行通信。也就是说,一对具有不同自然频率的振荡器之间的突触连接在功能上是无足轻重的。(2)如果两个具有相同自然频率的神经振荡器之间的连接属于一类病态突触配置,它们可能不会进行通信。在这两种情况下,神经振荡器之间突触连接的解剖学存在并不一定保证这些连接在功能上是重要的。(3)神经振荡器之间可能存在显著的相位差(时间延迟),这是由网络的突触组织导致的,而不是由传输延迟导致的。使用典范模型我们可以说明自燃和自主静止(振荡器死亡)现象。也就是说,一个无源元件网络可以表现出有源特性,反之亦然。我们还研究了戴尔原则如何影响网络的动力学,特别是网络能够再现的相位差。从这个角度我们给出了所有可能的突触组织的完整分类。这里发展的理论为振荡网络的突触组织和功能特性之间的关系提供了一些启示。我们方法的主要优点是我们获得了关于所有神经振荡器网络的结果,包括真实的大脑。主要缺点是我们的发现仅在大脑接近临界状态时有效,即对于多个安德罗诺夫 - 霍普夫分岔有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验