Suppr超能文献

肌肉酸度对人体剧烈运动期间肌肉代谢和疲劳的影响。

Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.

作者信息

Bangsbo J, Madsen K, Kiens B, Richter E A

机构信息

Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark.

出版信息

J Physiol. 1996 Sep 1;495 ( Pt 2)(Pt 2):587-96. doi: 10.1113/jphysiol.1996.sp021618.

Abstract
  1. The aim of this study was to examine the effect of muscle pH on muscle metabolism and development of fatigue during intense exercise. 2. Seven subjects performed intense exhaustive leg exercise on two occasions: with and without preceding intense intermittent arm exercise leading to high or moderate (control) blood lactate concentrations (HL and C, respectively). Prior to and immediately after each exercise bout, a muscle biopsy was taken from m. vastus lateralis of the active leg. Leg blood flow was measured and femoral arterial and venous blood samples were collected before and frequently during the exhaustive exercises. 3. The duration of the exercise was shorter in HL than in C (3.46 +/- 0.28 vs. 4.67 +/- 0.55 min; means +/- S.E.M.; P < 0.05). Before exercise muscle pH was the same in C and HL (7.17 vs. 7.10), but at the end of exercise muscle pH was lower in HL than in C (6.82 vs. 6.65; P < 0.05). The release of potassium during exercise was higher (P < 0.05) in HL compared with C, but the arterial and femoral venous plasma potassium concentrations were the same at exhaustion in HL and C. 4. Muscle lactate concentration was higher in HL compared with C (3.7 +/- 0.4 vs. 1.6 +/- 0.2 mmol (kg wet weight)-1; P < 0.05), but the same at exhaustion (26.5 +/- 2.7 vs. 25.4 +/- 2.4 mmol (kg wet weight)-1). Total release of lactate in HL was lower than in C (18.7 +/- 4.5 vs. 50.4 +/- 11.0 mmol; P < 0.05), but rate of lactate production was not different (9.0 +/- 1.0 vs. 10.2 +/- 1.3 mmol (kg wet weight)-1 min-1). The rate of muscle glycogen breakdown was the same in C and HL (8.1 +/- 1.2 vs. 8.2 +/- 1.0 mmol (kg wet weight)-1 min-1). 5. The present data suggest that elevated muscle acidity does not reduce muscle glycogenolysis/glycolysis and is not the only cause of fatigue during intense exercise in man. Instead, accumulation of potassium in muscle interstitium may be an important factor in the development of fatigue.
摘要
  1. 本研究的目的是探讨肌肉pH值对剧烈运动期间肌肉代谢及疲劳发展的影响。2. 七名受试者进行了两次剧烈的腿部力竭运动:一次是在进行高强度间歇性手臂运动之前,一次是在不进行该运动的情况下,前者会导致血液乳酸浓度升高或处于中等水平(分别为HL和C)。在每次运动前和运动结束后立即从活动腿部的股外侧肌取肌肉活检样本。测量腿部血流量,并在力竭运动前及运动过程中频繁采集股动脉和股静脉血样。3. HL组的运动持续时间比C组短(3.46±0.28分钟对4.67±0.55分钟;均值±标准误;P<0.05)。运动前C组和HL组的肌肉pH值相同(7.17对7.10),但运动结束时HL组的肌肉pH值低于C组(6.82对6.65;P<0.05)。HL组运动期间钾的释放量高于C组(P<0.05),但HL组和C组力竭时动脉和股静脉血浆钾浓度相同。4. HL组的肌肉乳酸浓度高于C组(3.7±0.4对1.6±0.2毫摩尔/(千克湿重)-1;P<0.05),但力竭时相同(26.5±2.7对25.4±2.4毫摩尔/(千克湿重)-1)。HL组乳酸的总释放量低于C组(18.7±4.5对50.4±11.0毫摩尔;P<0.05),但乳酸生成速率无差异(9.0±1.0对10.2±1.3毫摩尔/(千克湿重)-1分钟-1)。C组和HL组的肌肉糖原分解速率相同(8.1±1.2对8.2±1.0毫摩尔/(千克湿重)-1分钟-1)。5. 目前的数据表明,肌肉酸度升高并不会降低肌肉糖原分解/糖酵解,也不是人类剧烈运动期间疲劳的唯一原因。相反,肌肉间质中钾的积累可能是疲劳发展的一个重要因素。

相似文献

1
Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.
J Physiol. 1996 Sep 1;495 ( Pt 2)(Pt 2):587-96. doi: 10.1113/jphysiol.1996.sp021618.
2
Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
J Physiol. 1992;451:205-27. doi: 10.1113/jphysiol.1992.sp019161.
3
Muscle glycogen synthesis in recovery from intense exercise in humans.
Am J Physiol. 1997 Aug;273(2 Pt 1):E416-24. doi: 10.1152/ajpendo.1997.273.2.E416.
4
Dissociation between lactate and proton exchange in muscle during intense exercise in man.
J Physiol. 1997 Oct 15;504 ( Pt 2)(Pt 2):489-99. doi: 10.1111/j.1469-7793.1997.489be.x.
5
Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
J Physiol. 2004 Feb 1;554(Pt 3):857-70. doi: 10.1113/jphysiol.2003.050658. Epub 2003 Nov 21.
6
Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
J Physiol. 1993 Mar;462:115-33. doi: 10.1113/jphysiol.1993.sp019546.
7
Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
J Physiol. 1990 Mar;422:539-59. doi: 10.1113/jphysiol.1990.sp018000.
8
Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans.
J Physiol. 2001 Nov 1;536(Pt 3):947-56. doi: 10.1111/j.1469-7793.2001.00947.x.
9
Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue.
Pflugers Arch. 2004 Jul;448(4):452-6. doi: 10.1007/s00424-004-1257-6. Epub 2004 Mar 27.
10
Lactate and H+ uptake in inactive muscles during intense exercise in man.
J Physiol. 1995 Oct 1;488 ( Pt 1)(Pt 1):219-29. doi: 10.1113/jphysiol.1995.sp020960.

引用本文的文献

1
Inspiratory muscle warm up improves 400 m performance in elite male runners.
Sci Rep. 2025 Aug 7;15(1):28879. doi: 10.1038/s41598-025-14797-0.
2
Lactic acidosis: implications for human exercise performance.
Eur J Appl Physiol. 2025 Mar 15. doi: 10.1007/s00421-025-05750-0.
7
Balanced crystalloid solutions versus normal saline in intensive care units: a systematic review and meta-analysis.
Int Urol Nephrol. 2023 Nov;55(11):2829-2844. doi: 10.1007/s11255-023-03570-9. Epub 2023 Apr 5.
9
Acute arm and leg muscle glycogen and metabolite responses to small-sided football games in healthy young men.
Eur J Appl Physiol. 2022 Aug;122(8):1929-1937. doi: 10.1007/s00421-022-04970-y. Epub 2022 Jun 1.
10
Determining voluntary activation in synergistic muscles: a novel mechanomyographic approach.
Eur J Appl Physiol. 2022 Aug;122(8):1897-1913. doi: 10.1007/s00421-022-04966-8. Epub 2022 May 24.

本文引用的文献

1
Lactate and H+ uptake in inactive muscles during intense exercise in man.
J Physiol. 1995 Oct 1;488 ( Pt 1)(Pt 1):219-29. doi: 10.1113/jphysiol.1995.sp020960.
2
Effects of prior exercise or ammonium chloride ingestion on muscular strength and endurance.
Med Sci Sports Exerc. 1993 Jul;25(7):809-14. doi: 10.1249/00005768-199307000-00009.
3
Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
J Physiol. 1993 Mar;462:115-33. doi: 10.1113/jphysiol.1993.sp019546.
4
K+ shifts of skeletal muscle during stepwise bicycle exercise with and without beta-adrenoceptor blockade.
J Physiol. 1994 May 15;477(Pt 1):149-59. doi: 10.1113/jphysiol.1994.sp020179.
5
Effect of varied lactate levels on bicycle ergometer performance.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):507-13. doi: 10.1152/jappl.1984.57.2.507.
8
Changes in muscle contractile properties and neural control during human muscular fatigue.
Muscle Nerve. 1984 Nov-Dec;7(9):691-9. doi: 10.1002/mus.880070902.
9
Maximal perfusion of skeletal muscle in man.
J Physiol. 1985 Sep;366:233-49. doi: 10.1113/jphysiol.1985.sp015794.
10
Buffering capacity of deproteinized human vastus lateralis muscle.
J Appl Physiol (1985). 1985 Jan;58(1):14-7. doi: 10.1152/jappl.1985.58.1.14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验