Suppr超能文献

Molecular mechanism of tissue factor-mediated acceleration of factor VIIa activity.

作者信息

Higashi S, Matsumoto N, Iwanaga S

机构信息

Department of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812-81, Japan.

出版信息

J Biol Chem. 1996 Oct 25;271(43):26569-74. doi: 10.1074/jbc.271.43.26569.

Abstract

The mechanism of the acceleration of the catalytic activity of factor VIIa (VIIa) in the presence of tissue factor (TF) was investigated. To explore the VIIa's site(s) that correlates with TF-mediated acceleration, zymogen VII, VIIa, and active site-modified VIIa were prepared, and dissociation constants (Kd) for their bindings to TF or soluble TF in solution were determined. We found that conversion of zymogen VII to VIIa led to an increase in affinity (DeltaDeltaG = 4.3-4.4 kJ/mol) for TFs. Dansyl-Glu-Gly-Arg chloromethyl ketone (DNS-EGRck) treatment of VIIa led to a further increase in the affinity (DeltaDeltaG = 7.3-12 kJ/mol). Neither removal of the Gla domain from VIIa nor truncation of the COOH-terminal membrane and cytoplasmic regions of TF affected the affinity enhanced after DNS-EGRck treatment of VIIa. Treatment of VIIa with (p-amidinophenyl)methanesulfonyl fluoride also enhanced its affinity for soluble TF, whereas treatment with 4-(2-aminoethyl)benzenesulfonyl fluoride, phenylmethylsulfonyl fluoride, or diisopropyl fluorophosphate had a slight effect on the affinity. On the other hand, DNS-EGRck and (p-amidinophenyl)methanesulfonyl fluoride treatments, but not diisopropyl fluorophosphate treatment, of VIIa led to protection of its alpha-amino group of Ile-153 from carbamylation. Protection of the alpha-amino group was consistent with formation of a critical salt bridge between Ile-153 and Asp-343 in the protease domain of VIIa. Therefore, TF may preferentially bind to the active conformational state of VIIa. When one assumes that free VIIa exists in equilibrium between minor active and dominant zymogen-like inactive conformational states, preferential binding of TF to the active state leads to a shift in equilibrium. We speculate that TF traps the active conformational state of VIIa and converts its zymogen-like state into an active state, thereby accelerating the VIIa activity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验