Suppr超能文献

The covalent binding of [14C]acetaminophen to mouse hepatic microsomal proteins: the specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases.

作者信息

Zhou L, McKenzie B A, Eccleston E D, Srivastava S P, Chen N, Erickson R R, Holtzman J L

机构信息

Research Service, Veterans Affairs Medical Center, Minneapolis, Minnesota 55417, USA.

出版信息

Chem Res Toxicol. 1996 Oct-Nov;9(7):1176-82. doi: 10.1021/tx960069d.

Abstract

Numerous in vitro studies have indicated that acetaminophen is activated by mouse hepatic microsomal cytochrome P450 to form N-acetylbenzoquinone imine. This in turn covalently binds through a Michael addition to protein sulfhydryl and amino groups. Although acetaminophen adducts of several cytosolic proteins have been purified after its administration in vivo, no adducts of specific microsomal proteins have been reported. We find that, after the in vitro incubation of mouse hepatic microsomes with [ring-14C] acetaminophen in the presence of an NADPH generating system, 95% of the bound radioactivity was associated with adducts to three intraluminal microsomal proteins: calreticulin and the two forms of thiol:protein disulfide oxidoreductase, Q2 and Q5. The acetaminophen bound to 0.35, 1.32, and 0.25 mol/mol of the three proteins, respectively. Sequencing of the 14C-labeled tryptic peptides indicated that the acetaminophen bound to lysine 103 of Q2, lysines 202, 209 or 210 and 354 of Q5 and lysines 233 or 239 of calreticulin. No adducts of cysteine residues were observed. Our data might suggest that acetaminophen hepatotoxicity results from the formation of the reactive metabolite within the endoplasmic reticulum. This then binds to these essential proteins and blocks the posttranslational modification of secretory and membrane proteins. This inhibition could then lead to cellular injury and death.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验