Lehmann H P, Wachter M R
Johns Hopkins School of Medicine, University of Baltimore.
Proc AMIA Annu Fall Symp. 1996:433-7.
For decades, statisticians, philosophers, medical investigators and others interested in data analysis have argued that the Bayesian paradigm is the proper approach for reporting the results of scientific analyses for use by clients and readers. To date, the methods have been too complicated for non-statisticians to use. In this paper we argue that the World-Wide Web provides the perfect environment to put the Bayesian paradigm into practice: the likelihood function of the data is parsimoniously represented on the server side, the reader uses the client to represent her prior belief, and a downloaded program (a Java applet) performs the combination. In our approach, a different applet can be used for each likelihood function, prior belief can be assessed graphically, and calculation results can be reported in a variety of ways. We present a prototype implementation, BayesApplet, for two-arm clinical trials with normally-distributed outcomes, a prominent model for clinical trials. The primary implication of this work is that publishing medical research results on the Web can take a form beyond or different from that currently used on paper, and can have a profound impact on the publication and use of research results.
几十年来,统计学家、哲学家、医学研究人员以及其他对数据分析感兴趣的人一直认为,贝叶斯范式是报告科学分析结果以供客户和读者使用的恰当方法。到目前为止,这些方法对于非统计学家来说过于复杂而难以使用。在本文中,我们认为万维网为将贝叶斯范式付诸实践提供了完美的环境:数据的似然函数在服务器端被简洁地表示,读者使用客户端来表示她的先验信念,并且一个下载的程序(Java小程序)执行两者的结合。在我们的方法中,每个似然函数可以使用不同的小程序,可以通过图形方式评估先验信念,并且计算结果可以以多种方式报告。我们针对具有正态分布结果的双臂临床试验(一种用于临床试验的重要模型)展示了一个原型实现,即贝叶斯小程序。这项工作的主要意义在于,在网络上发布医学研究结果可以采用一种不同于当前纸质形式的形式,并且可能对研究结果的发布和使用产生深远影响。