Safer J D, Langlois M F, Cohen R, Monden T, John-Hope D, Madura J, Hollenberg A N, Wondisford F E
Department of Medicine, Beth Israel Hospital, Boston, Massachusetts, USA.
Mol Endocrinol. 1997 Jan;11(1):16-26. doi: 10.1210/mend.11.1.9867.
Resistance to thyroid hormone (RTH) is due to mutations in the beta-isoform of the thyroid hormone receptor (TR-beta). The mutant TR interferes with the action of normal TR to cause the clinical syndrome. Selective pituitary resistance to thyroid hormone (PRTH) results in inappropriate TSH secretion and peripheral sensitivity to elevated thyroid hormone levels. Association of the PRTH phenotype with in vitro behavior of the mutant TR has proved elusive. Alternative exon utilization results in two TR-beta isoforms, TR-beta 1 and TR-beta 2, which differ only in their amino termini. Although the TR-beta 1 isoform is ubiquitous, the TR-beta 2 isoform is found predominantly in the anterior pituitary and brain. To date, in vitro evaluation of RTH mutations has focused on the TR-beta 1 isoform. Site-directed mutagenesis was used to create several PRTH (R338L, R338W, V349M, R429Q, I431T) and generalized RTH (delta 337T, P453H) mutations in both TR-beta isoforms. The ability of mutant TRs to act as dominant negative inhibitors of wild type TR-beta function on positive and negative thyroid hormone response elements (pTREs and nTREs, respectively) was evaluated in transient transfection assays. PRTH mutants had no significant dominant negative activity as TR-beta 1 isoforms on pTREs found in peripheral tissues or on nTREs found on genes regulating TSH synthesis. PRTH mutants, in contrast, had strong dominant negative activity on these same nTREs as TR-beta 2 isoforms. Cotransfected retinoid X receptor-alpha was required for negative T3 regulation via the TR-beta 1 isoform but was not necessary for negative regulation via the TR-beta 2 isoform in CV-1 cells. The differing need for retinoid X receptor cotransfection demonstrates two distinct negative T3-regulatory pathways, one mediated by the TR-beta 1 and the other mediated by TR-beta 2. The selective effect of PRTH mutations on the TR-beta 2 isoform found in the hypothalamus and pituitary vs. the TR-beta 1 isoform found in peripheral tissues suggests a molecular mechanism for the PRTH disorder.
甲状腺激素抵抗(RTH)是由甲状腺激素受体(TR-β)的β异构体突变引起的。突变的TR干扰正常TR的作用,从而导致临床综合征。选择性垂体甲状腺激素抵抗(PRTH)导致促甲状腺激素(TSH)分泌异常以及外周对甲状腺激素水平升高的敏感性。PRTH表型与突变TR的体外行为之间的关联一直难以捉摸。外显子的选择性利用产生了两种TR-β异构体,即TR-β1和TR-β2,它们仅在氨基末端有所不同。尽管TR-β1异构体广泛存在,但TR-β2异构体主要存在于垂体前叶和大脑中。迄今为止,对RTH突变的体外评估主要集中在TR-β1异构体上。通过定点诱变在两种TR-β异构体中产生了几种PRTH(R338L、R338W、V349M、R429Q、I431T)和全身性RTH(δ337T、P453H)突变。在瞬时转染实验中评估了突变TR作为野生型TR-β功能的显性负性抑制剂对正性和负性甲状腺激素反应元件(分别为pTRE和nTRE)的作用。PRTH突变体作为TR-β1异构体,对外周组织中的pTRE或调节TSH合成的基因上的nTRE没有显著的显性负性活性。相比之下,PRTH突变体作为TR-β2异构体,对这些相同的nTRE具有强烈的显性负性活性。在CV-1细胞中,通过TR-β1异构体进行负性T3调节需要共转染视黄酸X受体-α,但通过TR-β2异构体进行负性调节则不需要。对视黄酸X受体共转染的不同需求表明存在两种不同的负性T3调节途径,一种由TR-β1介导,另一种由TR-β2介导。PRTH突变对下丘脑和垂体中发现 的TR-β2异构体与外周组织中发现的TR-β1异构体的选择性作用提示了PRTH疾病的分子机制。