Suppr超能文献

地点记忆:一种支持马尔海马体功能理论的导航模型。

Memory for places: a navigational model in support of Marr's theory of hippocampal function.

作者信息

Recce M, Harris K D

机构信息

Department of Anatomy and Developmental Biology, University College London, England.

出版信息

Hippocampus. 1996;6(6):735-48. doi: 10.1002/(SICI)1098-1063(1996)6:6<735::AID-HIPO15>3.0.CO;2-1.

Abstract

In this report we describe a model that applies Marr's theory of hippocampal function to the problem of map-based navigation. Like many others we attribute a spatial memory function to the hippocampus, but we suggest that the additional functional components required for map-based navigation are located elsewhere in the brain. One of the key functional components in this model is an egocentric map of space, located in the neocortex, that is continuously updated using ideothetic (self-motion) information. The hippocampus stores snapshots of this egocentric map. The modeled activity pattern of head direction cells is used to set the best egocentric map rotation to match the snapshots stored in the hippocampus, resulting in place cells with a nondirectional firing pattern. We describe an evaluation of this model using a mobile robot and demonstrate that with this model the robot can recognize an environment and find a hidden goal. This model is discussed in the context of prior experiments that were designed to discover the map-based spatial processing of animals. We also predict the results of further experiments.

摘要

在本报告中,我们描述了一个将马尔关于海马体功能的理论应用于基于地图导航问题的模型。和许多其他人一样,我们将空间记忆功能归因于海马体,但我们认为基于地图导航所需的额外功能组件位于大脑的其他部位。该模型的关键功能组件之一是位于新皮层的以自我为中心的空间地图,它使用本体感受(自身运动)信息不断更新。海马体存储这个以自我为中心的地图的快照。头部方向细胞的模拟活动模式用于设置最佳的以自我为中心的地图旋转,以匹配存储在海马体中的快照,从而产生具有非定向放电模式的位置细胞。我们描述了使用移动机器人对该模型的评估,并证明使用该模型机器人可以识别环境并找到隐藏目标。在先前旨在发现动物基于地图的空间处理的实验背景下讨论了该模型。我们还预测了进一步实验的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验