Suppr超能文献

Functional changes of rat brain microsomal membrane surface after learning task depending on dietary fatty acids.

作者信息

Yoshida S, Miyazaki M, Takeshita M, Yuasa S, Kobayashi T, Watanabe S, Okuyama H

机构信息

Research Laboratory Center, Oita Medical University, Japan.

出版信息

J Neurochem. 1997 Mar;68(3):1269-77. doi: 10.1046/j.1471-4159.1997.68031269.x.

Abstract

Biochemical characteristics of brain microsomal membranes were examined before and after the brightness-discrimination learning tasks in rats that were fed either safflower oil (alpha-linolenate-deficient) or perilla oil (alpha-linolenate-sufficient) diets. We detected small changes in the chain elongation system for polyunsaturated fatty acids in microsomes, whereas no significant difference was detected in the inositol trisphosphate-induced calcium release and ATP-induced calcium uptake profiles of microsomes between the two dietary groups. The calcium ion-induced aggregation rate of microsomes was determined in both groups. We found that the aggregation rate of microsomes in the safflower oil group was significantly greater than that in the perilla oil group. The difference in susceptibility of microsomal membrane phospholipids to phospholipase A2 between the groups was obvious, and the amount of released fatty acids by phospholipase A2 from the perilla oil group microsomes was nearly half of that from the safflower oil group microsomes after the learning task. Susceptibility of sialic acids on the brain microsomal membranes to exogenous sialidase was different only after the learning task in the safflower and perilla oil groups. These results suggest that the biochemical characteristics of membrane surfaces of brain microsomes are affected significantly by the learning task itself in a dietary oil-dependent manner.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验