Suppr超能文献

南极南极鱼亚目鱼类和北极鳕鱼中抗冻糖蛋白的趋同进化。

Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.

作者信息

Chen L, DeVries A L, Cheng C H

机构信息

Department of Molecular and Integrative Physiology, University of Illinois, Urbana 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3817-22. doi: 10.1073/pnas.94.8.3817.

Abstract

Antarctic notothenioid fishes and several northern cods are phylogenetically distant (in different orders and superorders), yet produce near-identical antifreeze glycoproteins (AFGPs) to survive in their respective freezing environments. AFGPs in both fishes are made as a family of discretely sized polymers composed of a simple glycotripeptide monomeric repeat. Characterizations of the AFGP genes from notothenioids and the Arctic cod show that their AFGPs are both encoded by a family of polyprotein genes, with each gene encoding multiple AFGP molecules linked in tandem by small cleavable spacers. Despite these apparent similarities, detailed analyses of the AFGP gene sequences and substructures provide strong evidence that AFGPs in these two polar fishes in fact evolved independently. First, although Antarctic notothenioid AFGP genes have been shown to originate from a pancreatic trypsinogen, Arctic cod AFGP genes share no sequence identity with the trypsinogen gene, indicating trypsinogen is not the progenitor. Second, the AFGP genes of the two fish have different intron-exon organizations and different spacer sequences and, thus, different processing of the polyprotein precursors, consistent with separate genomic origins. Third, the repetitive AFGP tripeptide (Thr-Ala/Pro-Ala) coding sequences are drastically different in the two groups of genes, suggesting that they arose from duplications of two distinct, short ancestral sequences with a different permutation of three codons for the same tripeptide. The molecular evidence for separate ancestry is supported by morphological, paleontological, and paleoclimatic evidence, which collectively indicate that these two polar fishes evolved their respective AFGPs separately and thus arrived at the same AFGPs through convergent evolution.

摘要

南极的南极鱼科鱼类和几种北极鳕鱼在系统发育上距离较远(属于不同的目和总目),但却产生了几乎相同的抗冻糖蛋白(AFGP)以在各自的冰冻环境中生存。这两种鱼类中的AFGP都是由一系列大小离散的聚合物组成,这些聚合物由一个简单的糖基三肽单体重复序列构成。对南极鱼科鱼类和北极鳕鱼的AFGP基因的表征表明,它们的AFGP都是由一个多蛋白基因家族编码的,每个基因编码多个通过小的可切割间隔区串联连接的AFGP分子。尽管有这些明显的相似之处,但对AFGP基因序列和亚结构的详细分析提供了有力证据,表明这两种极地鱼类中的AFGP实际上是独立进化的。首先,虽然南极鱼科鱼类的AFGP基因已被证明起源于胰腺胰蛋白酶原,但北极鳕鱼的AFGP基因与胰蛋白酶原基因没有序列同一性,这表明胰蛋白酶原不是其祖先。其次,这两种鱼的AFGP基因具有不同的内含子-外显子组织和不同的间隔区序列,因此多蛋白前体的加工方式也不同,这与它们独立的基因组起源一致。第三,两组基因中重复的AFGP三肽(苏氨酸-丙氨酸/脯氨酸-丙氨酸)编码序列有很大差异,这表明它们起源于两个不同的短祖先序列的重复,这两个序列对同一个三肽的三个密码子有不同的排列。单独起源的分子证据得到了形态学、古生物学和古气候学证据的支持,这些证据共同表明这两种极地鱼类分别进化出了各自的AFGP,因此通过趋同进化获得了相同的AFGP。

相似文献

1
Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3817-22. doi: 10.1073/pnas.94.8.3817.
2
Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3811-6. doi: 10.1073/pnas.94.8.3811.
3
Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10491-10496. doi: 10.1073/pnas.0603796103. Epub 2006 Jun 23.
4
'Antifreeze' glycoproteins from polar fish.
Eur J Biochem. 2003 Apr;270(7):1381-92. doi: 10.1046/j.1432-1033.2003.03488.x.
5
Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.
Mol Biol Evol. 2003 Nov;20(11):1897-908. doi: 10.1093/molbev/msg208. Epub 2003 Jul 28.
6
Molecular ecophysiology of Antarctic notothenioid fishes.
Philos Trans R Soc Lond B Biol Sci. 2007 Dec 29;362(1488):2215-32. doi: 10.1098/rstb.2006.1946.
10
Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation.
Comp Biochem Physiol B Biochem Mol Biol. 2006 Jul;144(3):290-300. doi: 10.1016/j.cbpb.2006.03.006. Epub 2006 May 24.

引用本文的文献

1
Evolutionary ecophysiology in extreme environments under a global change scenario.
Conserv Physiol. 2025 Aug 11;13(1):coaf059. doi: 10.1093/conphys/coaf059. eCollection 2025.
5
Genomic architecture and population structure of Boreogadus saida from Canadian waters.
Sci Rep. 2024 Aug 20;14(1):19331. doi: 10.1038/s41598-024-69782-w.
6
Parallel evolution of integrated craniofacial traits in trophic specialist pupfishes.
Ecol Evol. 2024 Jul 7;14(7):e11640. doi: 10.1002/ece3.11640. eCollection 2024 Jul.
7
Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve.
Proc Biol Sci. 2024 May;291(2023):20232408. doi: 10.1098/rspb.2023.2408. Epub 2024 May 29.
8
Klumpy: A tool to evaluate the integrity of long-read genome assemblies and illusive sequence motifs.
Mol Ecol Resour. 2025 Jan;25(1):e13982. doi: 10.1111/1755-0998.13982. Epub 2024 May 27.
9
Synthetic Antifreeze Glycoproteins with Potent Ice-Binding Activity.
Chem Mater. 2024 Apr 9;36(7):3424-3434. doi: 10.1021/acs.chemmater.4c00266. Epub 2024 Mar 25.
10
Structural diversity of marine anti-freezing proteins, properties and potential applications: a review.
Bioresour Bioprocess. 2022 Jan 22;9(1):5. doi: 10.1186/s40643-022-00494-7.

本文引用的文献

1
Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3811-6. doi: 10.1073/pnas.94.8.3811.
2
Adsorption to ice of fish antifreeze glycopeptides 7 and 8.
Biophys J. 1993 Jan;64(1):252-9. doi: 10.1016/S0006-3495(93)81361-4.
4
Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen.
Eur J Biochem. 1993 Nov 1;217(3):1091-7. doi: 10.1111/j.1432-1033.1993.tb18341.x.
6
Structure of two related rat pancreatic trypsin genes.
J Biol Chem. 1984 Nov 25;259(22):14255-64.
7
Glycoproteins as biological antifreeze agents in antarctic fishes.
Science. 1971 Jun 11;172(3988):1152-5. doi: 10.1126/science.172.3988.1152.
8
Structures of shorthorn sculpin antifreeze polypeptides.
Eur J Biochem. 1985 Aug 15;151(1):167-72. doi: 10.1111/j.1432-1033.1985.tb09081.x.
9
Structure and evolution of the insulin gene.
Annu Rev Genet. 1985;19:463-84. doi: 10.1146/annurev.ge.19.120185.002335.
10
The evolution of multigene families: human haptoglobin genes.
Annu Rev Genet. 1986;20:81-108. doi: 10.1146/annurev.ge.20.120186.000501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验