Suppr超能文献

RanGTP-核转运蛋白β复合物的解离,核蛋白输入过程中的一个中间体。

Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import.

作者信息

Floer M, Blobel G, Rexach M

机构信息

Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.

出版信息

J Biol Chem. 1997 Aug 1;272(31):19538-46. doi: 10.1074/jbc.272.31.19538.

Abstract

We previously showed that RanGTP forms a 1:1 complex with karyopherin beta that renders RanGTP inaccessible to RanGAP (Floer, M., and Blobel, G. (1996) J. Biol. Chem. 271, 5313-5316) and karyopherin beta functionally inactive (Rexach, M., and Blobel, G. (1995) Cell 83, 683-692). Recycling of both factors for another round of function requires dissociation of the RanGTP-karyopherin beta complex. Here we show using BIAcoreTM, a solution binding assay, and GTP hydrolysis and exchange assays, with yeast proteins, that karyopherin beta and RanGTP are recycled efficiently in a reaction that involves karyopherin alpha, RanBP1, RanGAP, and the C terminus of the nucleoporin Nup1. We find that karyopherin alpha first releases RanGTP from karyopherin beta in a reaction that does not require GTP hydrolysis. The released RanGTP is then sequestered by RanBP1, and the newly formed karyopherin alphabeta binds to the C terminus of Nup1. Finally, RanGTP is converted to RanGDP via nucleotide hydrolysis when RanGAP is present. Conversion of RanGTP to RanGDP can also occur via nucleotide exchange in the presence of RanGEF, an excess of GDP, and if RanBP1 is absent. Additional nucleoporin domains that bind karyopherin alphabeta stimulate recycling of karyopherin beta and Ran in a manner similar to the C terminus of Nup1.

摘要

我们之前的研究表明,RanGTP与核转运蛋白β形成1:1复合物,使得RanGAP无法接近RanGTP(Floer, M., and Blobel, G. (1996) J. Biol. Chem. 271, 5313 - 5316),并且使核转运蛋白β功能失活(Rexach, M., and Blobel, G. (1995) Cell 83, 683 - 692)。这两种因子要进行新一轮的功能循环,需要RanGTP - 核转运蛋白β复合物解离。在此,我们使用BIAcoreTM(一种溶液结合分析方法)以及GTP水解和交换分析方法,以酵母蛋白为研究对象,表明核转运蛋白β和RanGTP在涉及核转运蛋白α、RanBP1、RanGAP和核孔蛋白Nup1的C末端的反应中能够高效循环利用。我们发现,核转运蛋白α首先在一个不需要GTP水解的反应中从核转运蛋白β上释放出RanGTP。释放出的RanGTP随后被RanBP1隔离,新形成的核转运蛋白αβ与Nup1的C末端结合。最后,当存在RanGAP时,RanGTP通过核苷酸水解转化为RanGDP。在存在RanGEF、过量GDP且不存在RanBP1的情况下,RanGTP也可通过核苷酸交换转化为RanGDP。其他与核转运蛋白αβ结合的核孔蛋白结构域以类似于Nup1的C末端的方式刺激核转运蛋白β和Ran的循环利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验