Diemling M, Barth M, Moser E
NMR-Group, Institute of Medical Physics, University of Vienna, Austria.
Magn Reson Imaging. 1997;15(7):753-62. doi: 10.1016/s0730-725x(97)00030-1.
Understanding and quantifying the various contributions to functional magnetic resonance imaging (FMRI) signal changes in activated cortical areas is paramount for a clinical application of brain mapping by FMRI. Therefore, all significant contributions to FMRI signal changes, both extra- and intravascular, from macrovessels down to the capillary network, should be taken into account. We present a gradient-recalled-echo FMRI model based on in-flow effects described by the Bloch equations, adding susceptibility effects empirically via T2* differences measured in vitro in human blood samples. Results of these calculations (by systematically varying alpha, echo time (TE), repetition time (TR), as well as blood velocity and T2* upon stimulation) may be used to (a) simulate functional MRI experiments with different measurement protocols and (b) estimate realistic values for important anatomical and physiological details that influence local signal changes in FMRI (i.e., size and distribution of vessels, effective relaxation times of blood, etc.). The excellent agreement between our model calculations and experimental results from conventional gradient recalled echo fMRI in vivo suggests a significant contribution from very slow flow and oxygenation changes, predominantly in small vessels (vblood = 1-4 mm/s). The actual contribution of T1- and T2-related effects is strongly dependent on sequence design and actual sequence parameters used. Thus, the model simulations presented may also be used to optimize measurement protocols for investigating various neurophysiological phenomena.
理解并量化激活的皮质区域对功能磁共振成像(FMRI)信号变化的各种贡献,对于FMRI脑图谱的临床应用至关重要。因此,应考虑从大血管到毛细血管网络对FMRI信号变化的所有显著贡献,包括血管外和血管内的贡献。我们提出了一种基于布洛赫方程描述的流入效应的梯度回波FMRI模型,并通过在人体血液样本中体外测量的T2差异凭经验添加了磁化率效应。这些计算结果(通过在刺激时系统地改变α、回波时间(TE)、重复时间(TR)以及血流速度和T2)可用于(a)模拟具有不同测量方案的功能磁共振成像实验,以及(b)估计影响FMRI局部信号变化的重要解剖和生理细节的实际值(即血管的大小和分布、血液的有效弛豫时间等)。我们的模型计算与传统梯度回波功能磁共振成像在体内的实验结果之间的出色一致性表明,非常缓慢的血流和氧合变化有显著贡献,主要发生在小血管中(血流速度vblood = 1 - 4 mm/s)。T1和T2相关效应的实际贡献强烈依赖于序列设计和所使用的实际序列参数。因此,所呈现的模型模拟也可用于优化用于研究各种神经生理现象的测量方案。