Suppr超能文献

Behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic.

作者信息

Loty C, Forest N, Boulekbache H, Kokubo T, Sautier J M

机构信息

Faculté de Chirurgie Dentaire, Institut Biomédical des Cordeliers, Université Paris, France.

出版信息

J Biomed Mater Res. 1997 Oct;37(1):137-49. doi: 10.1002/(sici)1097-4636(199710)37:1<137::aid-jbm17>3.0.co;2-d.

Abstract

We examined the behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic containing apatite and wollastonite (A.W.G.C.). Biomaterial surface topography and profiles were evaluated by bidimensional profilometry and revealed a rough surface for the glass-ceramic compared to the plastic coverslips used as controls. Chondrocyte attachment was evaluated by measuring the number of attached cells after one day of culture and by morphological observations. Chondrocytes attached in great numbers to the material surface by means of focal contacts containing vinculin and beta1-integrin. Fluorescent labeling of actin and vimentin revealed a poor spreading of chondrocytes on the bioactive glass-ceramic compared to the plastic coverslips, where the cells appeared to adhere intimately to the surface and exhibited polygonal arrays of stress fibers. During the following days of culture, chondrocytes proliferated, colonized the surface of the material, and, finally, on day 10, formed nodular structures composed of round cells separated by a dense extracellular matrix. Furthermore, these clusters of round cells were positive for type II collagen and chondroitin sulfate, both hard markers of the chondrocyte phenotype. In addition, protein synthesis, alkaline phosphatase activity, and proteoglycan production were found to increase gradually during the culture period with a pattern similar to that observed on control cultures. These results demonstrate that the bioactive glass-ceramic tested in this study appears to be a suitable substrate for in vitro chondrocyte attachment, differentiation, and matrix production.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验