Kovatchev B P, Cox D J, Gonder-Frederick L A, Clarke W
University of Virginia Health Sciences Center, Charlottesville 22901, USA.
Diabetes Care. 1997 Nov;20(11):1655-8. doi: 10.2337/diacare.20.11.1655.
To introduce a data transformation that enhances the power of blood glucose data analyses.
In the standard blood glucose scale, hypoglycemia (blood glucose, < 3.9 mmol/l) and hyperglycemia (blood glucose, > 10 mmol/l) have very different ranges, and euglycemia is not central in the entire blood glucose range (1.1-33.3 mmol/l). Consequently, the scale is not symmetric and its clinical center (blood glucose, 6-7 mmol/l) is distant from its numerical center (blood glucose, 17 mmol/l). As a result, when blood glucose readings are analyzed, the assumptions of many parametric statistics are routinely violated. We propose a logarithmic data transformation that matches the clinical and numerical center of the blood glucose scale, thus making the transformed data symmetric.
The transformation normalized 203 out of 205 data samples containing 13,584 blood glucose readings of 127 type 1 diabetic individuals. An example illustrates that the mean and standard deviation based on transformed, rather than on raw, data better described subject's blood glucose distribution. Based on transformed data: 1) the low blood glucose index predicted the occurrence of severe hypoglycemia, while the raw blood glucose data (and glycosylated hemoglobin levels) did not; 2) the high blood glucose index correlated with the subjects' glycosylated hemoglobin (r = 0.63, P < 0.001); and 3) the low plus high blood glucose index was more sensitive than the raw data to a treatment (blood glucose awareness training) designed to reduce the range of blood glucose fluctuations.
Using symmetrized, instead of raw, blood glucose data strengthens the existing data analysis procedures and allows for the development of new statistical techniques. It is proposed that raw blood glucose data should be routinely transformed to a symmetric distribution before using parametric statistics.
介绍一种能增强血糖数据分析效能的数据转换方法。
在标准血糖范围内,低血糖(血糖<3.9 mmol/l)和高血糖(血糖>10 mmol/l)的范围差异很大,且血糖正常并非处于整个血糖范围(1.1 - 33.3 mmol/l)的中心位置。因此,该范围不对称,其临床中心(血糖6 - 7 mmol/l)与其数值中心(血糖17 mmol/l)相距甚远。结果,在分析血糖读数时,许多参数统计的假设经常被违反。我们提出一种对数数据转换方法,该方法能使血糖范围的临床中心与数值中心相匹配,从而使转换后的数据具有对称性。
这种转换使来自127名1型糖尿病患者的205个包含13584次血糖读数的数据样本中的203个实现了标准化。一个例子表明,基于转换后而非原始数据的均值和标准差能更好地描述受试者的血糖分布。基于转换后的数据:1)低血糖指数可预测严重低血糖的发生,而原始血糖数据(以及糖化血红蛋白水平)则不能;2)高血糖指数与受试者的糖化血红蛋白相关(r = 0.63,P < 0.001);3)低加高血糖指数比原始数据对旨在减少血糖波动范围的治疗(血糖意识训练)更敏感。
使用对称化而非原始的血糖数据可加强现有的数据分析程序,并有助于开发新的统计技术。建议在使用参数统计之前,常规地将原始血糖数据转换为对称分布。