Suppr超能文献

一种新型三唑类药物伏立康唑(UK-109,496)可阻断白色念珠菌和克鲁斯念珠菌中的甾醇生物合成。

A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei.

作者信息

Sanati H, Belanger P, Fratti R, Ghannoum M

机构信息

Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California 90509, USA.

出版信息

Antimicrob Agents Chemother. 1997 Nov;41(11):2492-6. doi: 10.1128/AAC.41.11.2492.

Abstract

Voriconazole (UK-109,496) is a novel triazole derivative with potent broad-spectrum activity against various fungi, including some that are inherently resistant to fluconazole, such as Candida krusei. In this study we compared the effect of subinhibitory concentrations of voriconazole and fluconazole on sterol biosynthesis of fluconazole-resistant and -susceptible Candida albicans strains, as well as C. krusei, in an effort to delineate the precise mode of action of voriconazole. Voriconazole MICs ranged from 0.003 to 4 microg/ml, while fluconazole MICs ranged from 0.25 to >64 microg/ml. To investigate the effects of voriconazole and fluconazole on candidal sterols, yeast cells were grown in the absence and presence of antifungals. In untreated C. albicans controls, ergosterol was the major sterol (accounting for 53.6% +/- 2.2% to 71.7% +/- 7.8% of the total) in C. albicans and C. krusei strains. There was no significant difference between the sterol compositions of the fluconazole-susceptible and -resistant C. albicans isolates. Voriconazole treatment led to a decrease in the total sterol content of both C. albicans strains tested. In contrast, exposure to fluconazole did not result in a significant reduction in the total sterol content of the three candidal strains tested (P > 0.5). Gas-liquid chromatographic analysis revealed profound changes in the sterol profiles of both C. albicans strains and of C. krusei in response to voriconazole. This antifungal agent exerted a similar effect on the sterol compositions of both fluconazole-susceptible and -resistant C. albicans strains. Interestingly, a complete inhibition of ergosterol synthesis and accumulation of its biosynthetic precursors were observed in both strains treated with voriconazole. In contrast, fluconazole partially inhibited ergosterol synthesis. Analysis of sterols obtained from a fluconazole-resistant C. albicans strain grown in the presence of different concentrations of voriconazole showed that this agent inhibits ergosterol synthesis in a dose-dependent manner. In C. krusei, voriconazole significantly inhibited ergosterol synthesis (over 75% inhibition). C. krusei cells treated with voriconazole accumulated the following biosynthetic intermediates: squalene, 4,14-dimethylzymosterol, and 24-methylenedihydrolanosterol. Accumulation of these methylated sterols is consistent with the premise that this agent functions by inhibiting fungal P-450-dependent 14alpha-demethylase. As expected, treating C. krusei with fluconazole minimally inhibited ergosterol synthesis. Importantly, our data indicate that voriconazole is more effective than fluconazole in blocking candidal sterol biosynthesis, consistent with the different antifungal potencies of these compounds.

摘要

伏立康唑(UK-109,496)是一种新型三唑衍生物,对多种真菌具有强大的广谱活性,包括一些对氟康唑天然耐药的真菌,如克柔念珠菌。在本研究中,我们比较了亚抑菌浓度的伏立康唑和氟康唑对氟康唑耐药和敏感的白色念珠菌菌株以及克柔念珠菌甾醇生物合成的影响,以阐明伏立康唑的确切作用模式。伏立康唑的最低抑菌浓度(MIC)范围为0.003至4微克/毫升,而氟康唑的MIC范围为0.25至>64微克/毫升。为了研究伏立康唑和氟康唑对念珠菌甾醇的影响,酵母细胞在有无抗真菌药物的情况下生长。在未处理的白色念珠菌对照中,麦角甾醇是白色念珠菌和克柔念珠菌菌株中的主要甾醇(占总量的53.6%±2.2%至71.7%±7.8%)。氟康唑敏感和耐药的白色念珠菌分离株的甾醇组成之间没有显著差异。伏立康唑处理导致所测试的两种白色念珠菌菌株的总甾醇含量降低。相比之下,暴露于氟康唑并未导致所测试的三种念珠菌菌株的总甾醇含量显著降低(P>0.5)。气液色谱分析显示,白色念珠菌菌株和克柔念珠菌的甾醇谱因伏立康唑而发生了深刻变化。这种抗真菌剂对氟康唑敏感和耐药的白色念珠菌菌株的甾醇组成产生了类似的影响。有趣的是,在用伏立康唑处理的两种菌株中均观察到麦角甾醇合成的完全抑制及其生物合成前体的积累。相比之下,氟康唑部分抑制麦角甾醇合成。对在不同浓度伏立康唑存在下生长的氟康唑耐药白色念珠菌菌株获得的甾醇分析表明,该药物以剂量依赖方式抑制麦角甾醇合成。在克柔念珠菌中,伏立康唑显著抑制麦角甾醇合成(抑制率超过75%)。用伏立康唑处理的克柔念珠菌细胞积累了以下生物合成中间体:角鲨烯、4,14-二甲基酵母甾醇和24-亚甲基二氢羊毛甾醇。这些甲基化甾醇的积累与该药物通过抑制真菌P-450依赖性14α-脱甲基酶发挥作用的前提一致。正如预期的那样,用氟康唑处理克柔念珠菌对麦角甾醇合成的抑制作用最小。重要的是,我们的数据表明,伏立康唑在阻断念珠菌甾醇生物合成方面比氟康唑更有效,这与这些化合物不同的抗真菌效力一致。

相似文献

1
A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei.
Antimicrob Agents Chemother. 1997 Nov;41(11):2492-6. doi: 10.1128/AAC.41.11.2492.
3
Activity of voriconazole against Candida albicans and Candida krusei isolated since 1984.
Int J Antimicrob Agents. 2000 Nov;16(3):205-9. doi: 10.1016/s0924-8579(00)00191-6.
4
Mechanism of fluconazole resistance in Candida krusei.
Antimicrob Agents Chemother. 1998 Oct;42(10):2645-9. doi: 10.1128/AAC.42.10.2645.
5
7
Posaconazole is a potent inhibitor of sterol 14alpha-demethylation in yeasts and molds.
Antimicrob Agents Chemother. 2004 Oct;48(10):3690-6. doi: 10.1128/AAC.48.10.3690-3696.2004.
8
Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei.
Antimicrob Agents Chemother. 2003 Apr;47(4):1213-9. doi: 10.1128/AAC.47.4.1213-1219.2003.

引用本文的文献

1
Role of Fungi in Tumorigenesis: Promises and Challenges.
Annu Rev Pathol. 2025 Jan;20(1):459-482. doi: 10.1146/annurev-pathmechdis-111523-023524.
2
Voriconazole-induced periostitis in the hand.
Radiol Case Rep. 2024 Dec 19;20(3):1431-1434. doi: 10.1016/j.radcr.2024.11.079. eCollection 2025 Mar.
3
Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit .
J Fungi (Basel). 2024 Oct 7;10(10):698. doi: 10.3390/jof10100698.
4
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.
PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul.
5
Mechanism Underlying Conflicting Drug-Drug Interaction Between Aprepitant and Voriconazole via Cytochrome P450 3A4-Mediated Metabolism.
Yonago Acta Med. 2024 Jan 24;67(1):31-40. doi: 10.33160/yam.2024.02.004. eCollection 2024 Feb.
8
Beyond Ergosterol: Strategies for Combatting Antifungal Resistance in and .
Tetrahedron. 2023 Mar 3;133. doi: 10.1016/j.tet.2023.133268. Epub 2023 Jan 11.
10
Keratitis-Review of Current Treatment Possibilities.
J Clin Med. 2021 Nov 23;10(23):5468. doi: 10.3390/jcm10235468.

本文引用的文献

1
Antifungal agents: chemotherapeutic targets and immunologic strategies.
Antimicrob Agents Chemother. 1996 Feb;40(2):279-91. doi: 10.1128/AAC.40.2.279.
5
Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole.
Antimicrob Agents Chemother. 1994 Sep;38(9):2029-33. doi: 10.1128/AAC.38.9.2029.
6
Mechanisms of action of the antimycotic imidazoles.
J Invest Dermatol. 1981 Jun;76(6):438-41. doi: 10.1111/1523-1747.ep12521036.
7
Mode of action of miconazole on Candida albicans: effect on growth, viability and K+ release.
J Gen Microbiol. 1980 Jul;119(1):245-51. doi: 10.1099/00221287-119-1-245.
8
Comparison of miconazole- and ketoconazole-induced release of K+ from Candida species.
J Antimicrob Chemother. 1983 Apr;11(4):381-3. doi: 10.1093/jac/11.4.381.
9
Heterogeneity of action of mechanisms among antimycotic imidazoles.
Antimicrob Agents Chemother. 1981 Jul;20(1):71-4. doi: 10.1128/AAC.20.1.71.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验