Suppr超能文献

贝叶斯非参数总体模型:公式化及与似然方法的比较

Bayesian nonparametric population models: formulation and comparison with likelihood approaches.

作者信息

Wakefield J, Walker S

机构信息

Department of Epidemiology and Public Health, Imperial College School of Medicine at St Mary's, London, United Kingdom.

出版信息

J Pharmacokinet Biopharm. 1997 Apr;25(2):235-53. doi: 10.1023/a:1025736230707.

Abstract

Population approaches to modeling pharmacokinetic and/or pharmacodynamic data attempt to separate the variability in observed data into within- and between-individual components. This is most naturally achieved via a multistage model. At the first stage of the model the data of a particular individual is modeled with each individual having his own set of parameters. At the second stage these individual parameters are assumed to have arisen from some unknown population distribution which we shall denote F. The importance of the choice of second stage distribution has led to a number of flexible approaches to the modeling of F. A nonparametric maximum likelihood estimate of F was suggested by Mallet whereas Davidian and Gallant proposed a semiparametric maximum likelihood approach where the maximum likelihood estimate is obtained over a smooth class of distributions. Previous Bayesian work has concentrated largely on F being assigned to a parametric family, typically the normal or Student's t. We describe a Bayesian nonparametric approach using the Dirichlet process. We use Markov chain Monte Carlo simulation to implement the procedure. We discuss each procedure and compare our approach with those of Mallet and Davidian and Gallant, using simulated data for a pharmacodynamic dose-response model.

摘要

用于药代动力学和/或药效学数据建模的群体方法试图将观测数据中的变异性分解为个体内和个体间成分。这最自然地通过多阶段模型来实现。在模型的第一阶段,对特定个体的数据进行建模,每个个体都有自己的一组参数。在第二阶段,假设这些个体参数来自某个未知的总体分布,我们将其记为F。第二阶段分布选择的重要性导致了许多灵活的F建模方法。Mallet提出了F的非参数最大似然估计,而Davidian和Gallant提出了一种半参数最大似然方法,其中最大似然估计是在一类平滑分布上获得的。以前的贝叶斯工作主要集中在将F分配给一个参数族,通常是正态分布或学生t分布。我们描述了一种使用狄利克雷过程的贝叶斯非参数方法。我们使用马尔可夫链蒙特卡罗模拟来实现该过程。我们讨论了每个过程,并使用药效学剂量反应模型的模拟数据将我们的方法与Mallet、Davidian和Gallant的方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验