Suppr超能文献

细菌趋化性的双组分信号通路:受体、激酶和适应酶信号转导的分子视角

The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes.

作者信息

Falke J J, Bass R B, Butler S L, Chervitz S A, Danielson M A

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.

出版信息

Annu Rev Cell Dev Biol. 1997;13:457-512. doi: 10.1146/annurev.cellbio.13.1.457.

Abstract

The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.

摘要

细菌趋化作用的化学感应途径已成为受体调节磷酸化途径的双组分超家族的范例。这条简单的途径阐明了信号生物学领域的许多基本原理和未解决的问题。由于可以采用多种结构、生化和遗传学方法来研究,对该途径功能的分子描述进展迅速。因此,大多数途径元件的结构正在显现,生化研究正在阐明关键信号事件的机制,而遗传学方法正在揭示在各组分之间传递信息的分子间相互作用。最近的进展包括:(a)细胞表面受体中构象跨膜信号的首张分子图像;(b)激酶结构域和适应酶的四种新结构;(c)对受体介导的激酶调节、受体适应以及信号蛋白磷酸化激活机制的重大新见解。总体而言,化学感应途径及其调节的推进系统提供了一个理想的系统,可用于探究复杂细胞信号传导和行为背后的分子原理。

相似文献

2
Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics.
Curr Opin Microbiol. 2009 Apr;12(2):152-60. doi: 10.1016/j.mib.2009.01.010. Epub 2009 Feb 24.
3
A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3519-E3528. doi: 10.1073/pnas.1721554115. Epub 2018 Mar 26.
4
CheA Kinase of bacterial chemotaxis: chemical mapping of four essential docking sites.
Biochemistry. 2006 Jul 25;45(29):8699-711. doi: 10.1021/bi060580y.
5
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signaling and adaptation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 1):021910. doi: 10.1103/PhysRevE.64.021910. Epub 2001 Jul 24.
8
Flexible Hinges in Bacterial Chemoreceptors.
J Bacteriol. 2018 Feb 7;200(5). doi: 10.1128/JB.00593-17. Print 2018 Mar 1.
9
The design and development of Tar-EnvZ chimeric receptors.
Methods Enzymol. 2007;423:166-83. doi: 10.1016/S0076-6879(07)23007-1.

引用本文的文献

1
Nphos: Database and Predictor of Protein N-phosphorylation.
Genomics Proteomics Bioinformatics. 2024 Sep 13;22(3). doi: 10.1093/gpbjnl/qzae032.
2
Impact of Graphene Layers on Genetic Expression and Regulation within Sulfate-Reducing Biofilms.
Microorganisms. 2024 Aug 24;12(9):1759. doi: 10.3390/microorganisms12091759.
3
Influence of Copper on G20 Biofilm Formation.
Microorganisms. 2024 Aug 23;12(9):1747. doi: 10.3390/microorganisms12091747.
4
Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis.
mBio. 2024 Jul 17;15(7):e0087124. doi: 10.1128/mbio.00871-24. Epub 2024 Jun 20.
5
An chemoreceptor that mediates nitrate chemotaxis has conditional roles in the colonization of plant roots.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0076024. doi: 10.1128/aem.00760-24. Epub 2024 May 22.
7
Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems.
Biochemistry. 2023 Aug 15;62(16):2339-2357. doi: 10.1021/acs.biochem.3c00296. Epub 2023 Aug 4.
9
Analysis of CheW-like domains provides insights into organization of prokaryotic chemotaxis systems.
Proteins. 2023 Mar;91(3):315-329. doi: 10.1002/prot.26430. Epub 2022 Oct 6.
10
Bacterial Proprioception: Can a Bacterium Sense Its Movement?
Front Microbiol. 2022 Jul 7;13:928408. doi: 10.3389/fmicb.2022.928408. eCollection 2022.

本文引用的文献

1
The three-dimensional structure of the aspartate receptor from Escherichia coli.
Acta Crystallogr D Biol Crystallogr. 1995 Mar 1;51(Pt 2):145-54. doi: 10.1107/S0907444994010498.
2
A signal transducer for aerotaxis in Escherichia coli.
J Bacteriol. 1997 Jun;179(12):4075-9. doi: 10.1128/jb.179.12.4075-4079.1997.
4
Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor.
Mol Microbiol. 1997 Mar;23(6):1181-91. doi: 10.1046/j.1365-2958.1997.3001661.x.
5
Alpha-helical protein assembly motifs.
J Biol Chem. 1997 Jan 31;272(5):2583-6. doi: 10.1074/jbc.272.5.2583.
8
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
Biochemistry. 1997 Jan 28;36(4):699-710. doi: 10.1021/bi961663p.
9
Large modular proteins by NMR.
Nat Struct Biol. 1997 Jan;4(1):9. doi: 10.1038/nsb0197-9.
10
Phosphorylating and dephosphorylating protein complexes in bacterial chemotaxis.
J Bacteriol. 1997 Jan;179(1):287-9. doi: 10.1128/jb.179.1.287-289.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验