Suppr超能文献

基于MRI检查结果的乳腺癌神经网络分析

Neural network analysis of breast cancer from MRI findings.

作者信息

Abdolmaleki P, Buadu L D, Murayama S, Murakami J, Hashiguchi N, Yabuuchi H, Masuda K

机构信息

Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

出版信息

Radiat Med. 1997 Sep-Oct;15(5):283-93.

PMID:9445150
Abstract

PURPOSE

To evaluate how much the experience of radiologists affects the performance of an artificial neural network (ANN) trained by two highly experienced radiologists.

MATERIALS AND METHODS

Before biopsy two experienced radiologists reviewed the MR images of 100 adult patients with suspicious breast lesions and evaluated their findings based on six features. This database was then used to train a three-layered feed-forward neural network. The network's generalizing ability was then tested to predict the outcome of biopsy in 56 new patients' records which were extracted by 10 participating radiologists. The MRI findings of each reader were presented to the ANN to evaluate the effect of various levels of experience on the output of the ANN. The performance of the ANN was then compared with that of attendant physicians in terms of sensitivity, specificity, and accuracy as well as ROC analysis.

RESULTS

The best ANN outcome offered a correct diagnosis in 40 of 41 of the patients with malignant breast cancer and 10 of 15 with benign entity presented in the testing set. The output of the trained ANN outperformed the attendant radiologists with low levels of experience and showed comparable performance with radiologists with higher levels of experience.

CONCLUSIONS

The ANN is able to work as a backup system to assist radiologists in the diagnosis of breast cancer.

摘要

目的

评估放射科医生的经验对由两位经验丰富的放射科医生训练的人工神经网络(ANN)性能的影响程度。

材料与方法

在活检前,两位经验丰富的放射科医生对100例有可疑乳腺病变的成年患者的磁共振图像进行了回顾,并基于六个特征评估了他们的发现。然后使用该数据库训练一个三层前馈神经网络。接着测试该网络的泛化能力,以预测由10位参与研究的放射科医生提取的56例新患者记录的活检结果。将每位阅片者的MRI检查结果呈现给人工神经网络,以评估不同经验水平对人工神经网络输出的影响。然后在敏感性、特异性、准确性以及ROC分析方面,将人工神经网络的性能与主治医生的性能进行比较。

结果

在测试集中,人工神经网络的最佳结果是对41例恶性乳腺癌患者中的40例以及15例良性病变患者中的10例做出了正确诊断。训练后的人工神经网络的输出优于经验水平较低的主治放射科医生,并且与经验水平较高的放射科医生表现相当。

结论

人工神经网络能够作为一种辅助系统,协助放射科医生诊断乳腺癌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验