Suppr超能文献

AP-1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis.

作者信息

Liebermann D A, Gregory B, Hoffman B

机构信息

Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 N. Broad St., Philadelphia, PA 19140, USA.

出版信息

Int J Oncol. 1998 Mar;12(3):685-700. doi: 10.3892/ijo.12.3.685.

Abstract

A combination of in vitro and in vivo molecular genetic approaches have provided evidence to suggest that AP-1 (Fos/Jun) transcription factors play multiple roles in functional development of hematopoietic precursor cells into mature blood cells along most, if not all, of the hematopoietic cell lineages. This includes the monocyte/macrophage, granulocyte, megakaryocyte, mastocyte and erythroid lineages. In addition, studies using c-fos knockout mice have established a unique role for Fos, as a member of the AP-1 transcription factor complex, in determining the differentiation and activity of progenitors of the osteoclast lineage, a population of bone-forming cells which are of hematopoietic origin as well. Evidence has also accumulated to implicate AP-1 (Fos/Jun) transcription factor complexes as both positive and negative modulators of distinct apoptotic pathways in many cell types, including cells of hematopoietic origin. Fos/Jun have been implicated as positive modulators of apoptosis induced in hematopoietic progenitor cells of the myeloid lineage, a function that may relate to the control of blood cell homeostasis, as well as in programmed cell death associated with terminal differentiation of many other cell types, and apoptosis associated with withdrawal of growth/survival factors. On the other hand, the study of apoptosis induced in mammalian cells has implicated AP-1 in the protection against apoptosis induced by DNA-damaging agents. However, evidence to the contrary has been obtained as well, suggesting that AP-1 may function to modulate stress-induced apoptosis either positively or negatively, depending on the microenvironment and the cell type in which the stress stimulus is induced.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验