Suppr超能文献

The mutator form of polymerase beta with amino acid substitution at tyrosine 265 in the hinge region displays an increase in both base substitution and frame shift errors.

作者信息

Opresko P L, Sweasy J B, Eckert K A

机构信息

Department of Biochemistry and Molecular Biology and The Jake Gittlen Cancer Research Institute, Pennsylvania State University College of Medicine, M. S. Hershey Medical Center, P.O. Box 850, Hershey, Pennsylvania 17033, USA.

出版信息

Biochemistry. 1998 Feb 24;37(8):2111-9. doi: 10.1021/bi9722711.

Abstract

This study describes the first complete in vitro error specificity analysis of a mutator DNA polymerase that is altered in a residue not predicted to contact either the DNA or dNTP substrate. We examined this mutator form of polymerase beta (Y265C) in order to elucidate the critical role tyrosine 265 plays in the accuracy of DNA synthesis. Our results demonstrate that an increase in both frame shift errors in homonucleotide repeat sequences and base substitution errors contribute nearly equally to the Y265C mutator phenotype. The models described for production of these errors, primer/template misalignment and base misincorporation, respectively, are distinctly different, suggesting the Y265C alteration affects discrimination against both types of error production pathways. In addition, Y265C displays a 530-fold increase in multiple errors within the 203-base pair target region examined, relative to that of wild type. Processivity studies revealed that Y265C retains the near distributive nature of DNA synthesis characteristic of the wild type polymerase beta. Therefore, multiple errors exhibited by Y265C most likely result from independent polymerase binding events. Localization of tyrosine 265 in the X-ray crystallographic structure suggests this residue may play a role in mediating a conformational change of the polymerase [Pelletier, H., et al. (1996) Biochemistry 35, 12742-12761]. A conformational change is predicted to enhance the accuracy of DNA synthesis by imposing an induced fit selection against premutational intermediates. The observed loss of discrimination against both misalignment-mediated and misincorporation-mediated errors produced by polymerase Y265C is consistent with such a model.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验