Louzada-Neto F
Department of Statistics, University of Oxford, UK.
Lifetime Data Anal. 1997;3(4):367-81. doi: 10.1023/a:1009606229786.
We propose an extended hazard regression model which allows the spread parameter to be dependent on covariates. This allows a broad class of models which includes the most common hazard models, such as the proportional hazards model, the accelerated failure time model and a proportional hazards/accelerated failure time hybrid model with constant spread parameter. Simulations based on sub-classes of this model suggest that maximum likelihood performs well even when only small or moderate-size data sets are available and the censoring pattern is heavy. The methodology provides a broad framework for analysis of reliability and survival data. Two numerical examples illustrate the results.
我们提出了一种扩展的风险回归模型,该模型允许离散参数依赖于协变量。这使得一大类模型成为可能,其中包括最常见的风险模型,如比例风险模型、加速失效时间模型以及具有恒定离散参数的比例风险/加速失效时间混合模型。基于该模型子类的模拟表明,即使只有小或中等规模的数据集可用且删失模式严重,最大似然估计也表现良好。该方法为可靠性和生存数据分析提供了一个广泛的框架。两个数值例子说明了结果。