Suppr超能文献

A nonlinear operator-based speech feature analysis method with application to vocal fold pathology assessment.

作者信息

Hansen J H, Gavidia-Ceballos L, Kaiser J F

机构信息

Department of Electrical Engineering, Duke University, Durham, NC 27708-0281, USA.

出版信息

IEEE Trans Biomed Eng. 1998 Mar;45(3):300-13. doi: 10.1109/10.661155.

Abstract

Traditional speech processing methods for laryngeal pathology assessment assume linear speech production with measures derived from an estimated glottal flow waveform. They normally require the speaker to achieve complete glottal closure, which for many vocal fold pathologies cannot be accomplished. To address this issue, a nonlinear signal processing approach is proposed which does not require direct glottal flow waveform estimation. This technique is motivated by earlier studies of airflow characterization for human speech production. The proposed nonlinear approach employs a differential Teager energy operator and the energy separation algorithm to obtain formant AM and FM modulations from filtered speech recordings. A new speech measure is proposed based on parameterization of the autocorrelation envelope of the AM response. This approach is shown to achieve impressive detection performance for a set of muscular tension dysphonias. Unlike flow characterization using numerical solutions of Navier-Stokes equations, this method is extremely computationally attractive, requiring only a small time window of speech samples. The new noninvasive method shows that a fast, effective digital speech processing technique can be developed for vocal fold pathology assessment without the need for direct glottal flow estimation or complete glottal closure by the speaker. The proposed method also confirms that alternative nonlinear methods can begin to address the limitations of previous linear approaches for speech pathology assessment.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验