Suppr超能文献

Chloroform and carbon tetrachloride induce intrachromosomal recombination and oxidative free radicals in Saccharomyces cerevisiae.

作者信息

Brennan R J, Schiestl R H

机构信息

Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115-6012, USA.

出版信息

Mutat Res. 1998 Feb 2;397(2):271-8. doi: 10.1016/s0027-5107(97)00225-x.

Abstract

Chlorination of drinking water results in the generation of low levels of numerous chlorinated hydrocarbons due to the reaction of chlorine with naturally occurring organic compounds in the water. Concern has been raised about the safety of these chlorinated contaminants as several of them, most notably chloroform (trichloromethane), have been shown to be carcinogenic in long-term rodent bioassays and weak correlations between trihalomethane levels in drinking water and an increased risk of bladder and colorectal cancer in humans have been found. Chloroform and carbon tetrachloride induce liver cancer in rats and mice only at doses where significant hepatotoxicity is observed and have been classed as non-genotoxic carcinogens. We have investigated the ability of chloroform, carbon tetrachloride and 1,1,1-trichloroethane to induce deletions via intrachromosomal recombination in the yeast Saccharomyces cerevisiae. Chloroform and carbon tetrachloride induced this genotoxic recombination event at similar doses, 1,1,1-Trichloroethane gave only a weak response in the DEL recombination assay and only at the highest dose. We further show that chloroform and carbon tetrachloride, but not trichloroethane, induced oxidative free radical species in our yeast strain. The free radical scavenger N-acetylcysteine reduced chloroform-induced toxicity and recombination, and both chloroform and carbon tetrachloride were able to oxidize the free radical-sensitive reporter compound dichlorofluorescein diacetate in vivo. The implications of these findings to the carcinogenic activities of the three compounds are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验