Jung K H, Spudich J L
Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 77030, USA.
J Bacteriol. 1998 Apr;180(8):2033-42. doi: 10.1128/JB.180.8.2033-2042.1998.
The molecular complex containing the phototaxis receptor sensory rhodopsin I (SRI) and transducer protein HtrI (halobacterial transducer for SRI) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. One-photon excitation of the complex by orange light elicits attractant responses, while two-photon excitation (orange followed by near-UV light) elicits repellent responses in swimming cells. Several mutations in SRI and HtrI cause an unusual mutant phenotype, called orange-light-inverted signaling, in which the cell produces a repellent response to normally attractant light. We applied a selection procedure for intragenic and extragenic suppressors of orange-light-inverted mutants and identified 15 distinct second-site mutations that restore the attractant response. Two of the 3 suppressor mutations in SRI are positioned at the cytoplasmic ends of helices F and G, and 12 suppressor mutations in HtrI cluster at the cytoplasmic end of the second HtrI transmembrane helix (TM2). Nearly all suppressors invert the normally repellent response to two-photon stimulation to an attractant response when they are expressed with their suppressible mutant alleles or in an otherwise wild-type strain. The results lead to a model for control of flagellar reversal by the SRI-HtrI complex. The model invokes an equilibrium between the A (reversal-inhibiting) and R (reversal-stimulating) conformers of the signaling complex. Attractant light and repellent light shift the equilibrium toward the A and R conformers, respectively, and mutations are proposed to cause intrinsic shifts in the equilibrium in the dark form of the complex. Differences in the strength of the two-photon signal inversion and in the allele specificity of suppression are correlated, and this correlation can be explained in terms of different values of the equilibrium constant (Keq) for the conformational transition in different mutants and mutant-suppressor pairs.
包含趋光性受体感官视紫红质I(SRI)和转导蛋白HtrI(SRI的嗜盐菌转导蛋白)的分子复合物介导古菌盐生盐杆菌中的颜色敏感趋光性反应。该复合物被橙光单光子激发会引发吸引反应,而双光子激发(橙光后接近紫外光)会在游动细胞中引发排斥反应。SRI和HtrI中的几个突变会导致一种不寻常的突变表型,称为橙光反转信号,即细胞对通常具有吸引作用的光产生排斥反应。我们对橙光反转突变体的基因内和基因外抑制子应用了一种筛选程序,并鉴定出15个不同的第二位点突变,这些突变恢复了吸引反应。SRI中的3个抑制子突变中有2个位于螺旋F和G的胞质末端,HtrI中的12个抑制子突变聚集在第二个HtrI跨膜螺旋(TM2)的胞质末端。几乎所有抑制子在与可抑制的突变等位基因一起表达或在其他野生型菌株中表达时,都会将对双光子刺激通常具有排斥作用的反应反转成吸引反应。这些结果得出了一个关于SRI - HtrI复合物控制鞭毛反转的模型。该模型涉及信号复合物的A(反转抑制)和R(反转刺激)构象异构体之间的平衡。吸引光和排斥光分别使平衡向A和R构象异构体移动,并且提出突变会导致复合物暗形式下平衡的内在移动。双光子信号反转强度和抑制等位基因特异性的差异是相关的,并且这种相关性可以根据不同突变体和突变 - 抑制子对中构象转变的平衡常数(Keq)的不同值来解释。