Suppr超能文献

机械力作用下大肠杆菌大机械敏感离子通道(MscL)门控的机电耦合模型。

Electromechanical coupling model of gating the large mechanosensitive ion channel (MscL) of Escherichia coli by mechanical force.

作者信息

Gu L, Liu W, Martinac B

机构信息

Department of Pharmacology, University of Western Australia, Nedlands, Australia.

出版信息

Biophys J. 1998 Jun;74(6):2889-902. doi: 10.1016/S0006-3495(98)77995-0.

Abstract

We have developed a theoretical electromechanical coupling (EMC) model of gating of the large-conductance mechanosensitive ion channel (MscL). The model presents the first attempt to explain the pressure-dependent transitions between the closed and open channel conformations on a molecular level by assuming 1) a homohexameric structural model of the channel, 2) electrostatic interactions between various domains of the homohexamer, 3) structural flexibility of the N-terminal portion of the monomer, and 4) mechanically and electrostatically induced displacement of the N-terminal domain relative to other structural domains of the protein. In the EMC model, 12 membrane-spanning alpha-helices (six each of the M1 and M2 transmembrane domains of the MscL monomer), are envisaged to line the channel pore with a diameter of 40 A, whereas the N- and C-termini are oriented toward each other inside the pore when the channel is closed. The model proposes that stretching the membrane bilayer by mechanical force causes the monomers to be pulled away from and slightly tilted toward each other. This relative movement of alpha-helices could serve as a trigger to initiate a "swing-like" motion of the N-terminus around the glycine residue G14 that may act as a pivot. The analysis of the attractive and repulsive coulomb forces between all domains of the channel homohexamer suggested that an inclination angle of approximately 3.0 degrees - 4.1 degrees between the oppositely oriented channel monomers should suffice for the N-terminus to turn away from other domains causing the channel to open. According to the EMC model the minimal free energy change, deltaG, that could initiate the opening of the channel was 2 kT. Also, the model predicted that the negative pressure required for channel open probability, Po = 0.5, should be between 50 and 80 mmHg. These values were in a good agreement with the experimentally estimated pressures of 60-70 mmHg obtained with the MscL reconstituted in liposomes. Furthermore, consistent with a notion that the N-terminus may present a mechanosensitive structural element providing a mechanism to open the MscL by mechanical force, the model provides a simple explanation for the variations in pressure sensitivity observed with several MscL mutants having either deletions or substitutions in N- or C-terminus, or site-directed mutations in the S2-S3 loop.

摘要

我们构建了一个大电导机械敏感离子通道(MscL)门控的理论机电耦合(EMC)模型。该模型首次尝试在分子水平上解释通道关闭和开放构象之间的压力依赖性转变,其假设如下:1)通道的六聚体结构模型;2)六聚体各结构域之间的静电相互作用;3)单体N端部分的结构灵活性;4)N端结构域相对于蛋白质其他结构域的机械和静电诱导位移。在EMC模型中,设想12个跨膜α螺旋(MscL单体的M1和M2跨膜结构域各6个)排列在直径为40埃的通道孔内,而当通道关闭时,N端和C端在孔内相互朝向。该模型提出,通过机械力拉伸膜双层会导致单体相互拉开并略微倾斜。α螺旋的这种相对运动可能作为一个触发因素,引发N端围绕甘氨酸残基G14的“摆动样”运动,G14可能起到支点的作用。对通道六聚体所有结构域之间吸引力和排斥库仑力的分析表明,相对取向的通道单体之间约3.0度 - 4.1度的倾斜角应足以使N端与其他结构域分开,从而导致通道开放。根据EMC模型,能够引发通道开放的最小自由能变化ΔG为2kT。此外,该模型预测通道开放概率Po = 0.5所需的负压应在50至80 mmHg之间。这些值与在脂质体中重组的MscL实验估计的60 - 70 mmHg压力非常吻合。此外,与N端可能呈现机械敏感结构元件从而提供通过机械力打开MscL的机制这一观点一致,该模型为在N端或C端有缺失或取代、或在S2 - S3环中有定点突变的几种MscL突变体所观察到的压力敏感性变化提供了一个简单解释。

相似文献

4
Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve.
PLoS One. 2017 Aug 31;12(8):e0183822. doi: 10.1371/journal.pone.0183822. eCollection 2017.
5
Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli.
Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11652-7. doi: 10.1073/pnas.93.21.11652.
6
Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli.
Biophys J. 1997 Oct;73(4):1925-31. doi: 10.1016/S0006-3495(97)78223-7.
7
Structural models of the MscL gating mechanism.
Biophys J. 2001 Aug;81(2):917-36. doi: 10.1016/S0006-3495(01)75751-7.
9
The gating mechanism of the large mechanosensitive channel MscL.
Nature. 2001 Feb 8;409(6821):720-4. doi: 10.1038/35055559.

引用本文的文献

1
The dynamics of protein-protein interactions between domains of MscL at the cytoplasmic-lipid interface.
Channels (Austin). 2012 Jul-Aug;6(4):255-61. doi: 10.4161/chan.20756. Epub 2012 Jul 1.
2
Mechanosensitive channels: insights from continuum-based simulations.
Cell Biochem Biophys. 2008;52(1):1-18. doi: 10.1007/s12013-008-9024-5. Epub 2008 Sep 12.
5
Structure and function of the bacterial mechanosensitive channel of large conductance.
Protein Sci. 1999 Oct;8(10):1915-21. doi: 10.1110/ps.8.10.1915.
6
Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity.
Biophys J. 1999 Oct;77(4):1960-72. doi: 10.1016/S0006-3495(99)77037-2.

本文引用的文献

1
Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli.
Biophys J. 1997 Oct;73(4):1925-31. doi: 10.1016/S0006-3495(97)78223-7.
3
Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities.
Annu Rev Physiol. 1997;59:633-57. doi: 10.1146/annurev.physiol.59.1.633.
4
Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording.
Annu Rev Physiol. 1997;59:621-31. doi: 10.1146/annurev.physiol.59.1.621.
5
The molecules of mechanosensation.
Annu Rev Neurosci. 1997;20:567-94. doi: 10.1146/annurev.neuro.20.1.567.
7
Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli.
Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11652-7. doi: 10.1073/pnas.93.21.11652.
8
The pharmacology of mechanogated membrane ion channels.
Pharmacol Rev. 1996 Jun;48(2):231-52.
9
Families of ion channels with two hydrophobic segments.
Curr Opin Cell Biol. 1996 Aug;8(4):474-83. doi: 10.1016/s0955-0674(96)80023-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验