Clerc J, Fourré C, Fragu P
Service de Médecine Nucléaire et de Biophysique, Faculté Necker Enfants-Malades, Paris, France.
Cell Biol Int. 1997 Oct;21(10):619-33. doi: 10.1006/cbir.1998.0205.
Secondary ion mass spectrometry (SIMS) microscopy, a mass spectrometry method designed in the 1960s, offers new analytical capabilities, high sensitivity (ppm to ppb region), high specificity and improved lateral resolution, thus facilitating insight into many physiological and biomedical questions. Apart from the sample preparation and the physical characteristics of the detection, the biological model must also be considered. SIMS analysis of diffusible ions and molecules requires strict cryogenic procedures which always begin by a flash-freeze fixation. Cellular integrity can be checked by mapping the major element distributions since intra and extracellular ions are redistributed only in damaged cells. Cryofixing may be followed either by a freeze-fracture methodology or by cryoembedding and dry-cutting. Chemical sample preparation is only used for ions or molecules bound to fixed cell structures. The use of scanning procedures ameliorates the lateral resolution and chromosome imaging has been reported with probe size of below 50 nm. Absolute quantification can be derived for embedded specimen by using internal references included in tissue equivalent resins. The sensitivity is limited by the ionization yield of the tag element and may be further impaired when working at high mass resolution (> or = 5000) to eliminate interfering cluster ions. SIMS drug mapping is usually performed after in vitro administration of a molecule to cell culture systems. Drug detection is accomplished indirectly by detecting a tag isotope naturally present or introduced by labelling, mainly with halogens, 15N and 14C. Molecular imaging with TOF-SIMS is an appealing alternative especially for heavier compounds. We stress some biological problems through a critical review of published SIMS drug studies. SIMS proved useful in assessing the targeting specificity of nuclear medicine pharmaceutics, even after in vivo administration. The first microscopic evidence of a thionamide induced follicular blockade of the iodine organification process is presented in a human sample.
二次离子质谱(SIMS)显微镜技术是20世纪60年代设计的一种质谱方法,它具有新的分析能力、高灵敏度(ppm至ppb范围)、高特异性和改进的横向分辨率,从而有助于深入了解许多生理和生物医学问题。除了样品制备和检测的物理特性外,还必须考虑生物模型。对可扩散离子和分子的SIMS分析需要严格的低温程序,该程序总是从快速冷冻固定开始。通过绘制主要元素分布图可以检查细胞完整性,因为细胞内和细胞外离子仅在受损细胞中重新分布。冷冻固定后可采用冷冻断裂方法或冷冻包埋和干切方法。化学样品制备仅用于与固定细胞结构结合的离子或分子。扫描程序的使用提高了横向分辨率,并且已经报道了使用尺寸小于50 nm的探针进行染色体成像。通过使用组织等效树脂中包含的内标,可以对嵌入标本进行绝对定量。灵敏度受标记元素的电离产率限制,并且在以高质量分辨率(≥5000)工作以消除干扰簇离子时可能会进一步受损。SIMS药物图谱通常在将分子体外施用于细胞培养系统后进行。药物检测是通过检测天然存在或通过标记引入的标记同位素间接完成的,主要是卤素、15N和14C。TOF-SIMS分子成像尤其对于较重的化合物是一种有吸引力的替代方法。我们通过对已发表的SIMS药物研究的批判性综述强调了一些生物学问题。SIMS已被证明可用于评估核医学药物的靶向特异性,即使在体内给药后也是如此。在一份人类样本中展示了硫代酰胺诱导碘有机化过程的滤泡阻断的首个微观证据。