Yurdakök M
Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
Turk J Pediatr. 1998 Jan-Mar;40(1):17-33.
Neonatal sepsis is a life-threatening emergency and any delay in treatment may cause death. Initial signs of neonatal sepsis are slight and nonspecific. Therefore, in suspected sepsis, two or three days empirical antibiotic therapy should begin immediately after cultures have been obtained without awaiting the results. Antibiotics should be reevaluated when the results of the cultures and susceptibility tests are available. If the cultures are negative and the clinical findings are well, antibiotics should be stopped. Because of the nonspecific nature of neonatal sepsis, especially in small preterm infants, physicians continue antibiotics once started. If a baby has pneumonia or what appears to be sepsis, antibiotics should not be stopped, although cultures are negative. The duration of therapy depends on the initial response to the appropriate antibiotics but should be 10 to 14 days in most infants with sepsis and minimal or absent focal infection. In infants who developed sepsis during the first week of life, empirical therapy must cover group B streptococci, Enterobacteriaceae (especially E. coli) and Listeria monocytogenes. Penicillin or ampicillin plus an aminoglycoside is usually effective against all these organisms. Initial empirical antibiotic therapy for infants who developed sepsis beyond the first days of life must cover the organisms associated with early-onset sepsis as well as hospital-acquired pathogens such as staphylococci, enterococci and Pseudomonas aeruginosa. Penicillin or ampicillin and an aminoglycoside combination may also be used in the initial therapy of late-onset sepsis as in cases with early-onset sepsis. In nosocomial infections, netilmicin or amikacin should be preferred. In cases showing increased risk of staphylococcal infection (e.g. presence of vascular catheter) or Pseudomonas infection (e.g. presence of typical skin lesions), antistaphylococcal or anti-Pseudomonas agents may be preferred in the initial empirical therapy. In some centers, third-generation cephalosporins in combinations with penicillin or ampicillin have been used in the initial therapy of early-onset and late-onset neonatal sepsis. Third-generation cephalosporin may also be combined with an aminoglycoside in places where aminoglycoside-resistance to this antibiotic is high. However, third-generation cephalosporins should not be used in the initial therapy of suspected sepsis, because 1) extensive use of cephalosporins for initial therapy of neonatal sepsis may lead to the emergence of drug-resistant microorganisms (this has occurred more rapidly as compared with the aminoglycosides), 2) Antagonistic interactions have been demonstrated when the other beta-lactam antibiotics (e.g. penicillins) were combined with cephalosporins. Infections due to gram-negative bacilli can be treated with the combination of a penicillin-derivative (ampicillin or extended-spectrum penicillins) and an aminoglycoside. Third-generation cephalosporins in combination with an aminoglycoside or an extended-spectrum penicillin have been used in the treatment of sepsis due to these organisms. Piperacillin and azlocillin are the most active of extended-spectrum penicillins against Pseudomonas aeruginosa. Among the third-generation cephalosporins, cefoperazone and ceftazidime possess anti-Pseudomonas activity. Ceftazidime was found to be more active in vitro against Pseudomonas than cefoperazone or piperacillin. New antibiotics for gram-negative bacteria resistant to other agents are carbapenems, aztreonam, quinolones and isepamicin. Enterococci can be treated with a cell wall-active agent (e.g. penicillin, ampicillin, or vancomycin) and an aminoglycoside. Staphylococci are susceptible to penicillinase-resistant penicillins (e.g. oxacillin, nafcillin and methicillin). Resistant strains are uniformly sensitive to vancomycin. A penicillin or vancomycin and an aminoglycoside combination result in a more rapid bacteriocidal effect than is produced by either dr
新生儿败血症是一种危及生命的急症,治疗的任何延迟都可能导致死亡。新生儿败血症的初始症状轻微且不具特异性。因此,在怀疑败血症时,应在获取培养物后立即开始两到三天的经验性抗生素治疗,无需等待结果。当培养物和药敏试验结果出来后,应重新评估抗生素。如果培养结果为阴性且临床症状良好,应停用抗生素。由于新生儿败血症的非特异性,特别是在早产的小婴儿中,一旦开始使用抗生素,医生通常会持续使用。如果婴儿患有肺炎或疑似败血症,即使培养结果为阴性,抗生素也不应停用。治疗持续时间取决于对适当抗生素的初始反应,但大多数败血症且局部感染轻微或无局部感染的婴儿,治疗时间应为10至14天。对于出生后第一周内发生败血症的婴儿,经验性治疗必须覆盖B组链球菌、肠杆菌科(尤其是大肠杆菌)和单核细胞增生李斯特菌。青霉素或氨苄西林加一种氨基糖苷类抗生素通常对所有这些病原体有效。对于出生后数天以后发生败血症的婴儿,初始经验性抗生素治疗必须覆盖与早发型败血症相关的病原体以及医院获得性病原体,如葡萄球菌、肠球菌和铜绿假单胞菌。在晚发型败血症的初始治疗中,也可像早发型败血症一样使用青霉素或氨苄西林与氨基糖苷类抗生素联合使用。在医院感染中,应优先选用奈替米星或阿米卡星。对于显示葡萄球菌感染风险增加(如存在血管导管)或铜绿假单胞菌感染风险增加(如存在典型皮肤病变)的病例,在初始经验性治疗中可优先选用抗葡萄球菌或抗铜绿假单胞菌药物。在一些中心,第三代头孢菌素与青霉素或氨苄西林联合用于早发型和晚发型新生儿败血症的初始治疗。在氨基糖苷类抗生素耐药性较高的地方,第三代头孢菌素也可与氨基糖苷类抗生素联合使用。然而,第三代头孢菌素不应作为疑似败血症初始治疗的药物选择,原因如下:1)在新生儿败血症初始治疗中广泛使用头孢菌素可能导致耐药微生物的出现(与氨基糖苷类抗生素相比,这种情况出现得更快);2)当其他β-内酰胺类抗生素(如青霉素)与头孢菌素联合使用时,已证明存在拮抗相互作用。革兰氏阴性杆菌引起的感染可用青霉素衍生物(氨苄西林或广谱青霉素)与氨基糖苷类抗生素联合治疗。第三代头孢菌素与氨基糖苷类抗生素或广谱青霉素联合用于治疗由这些病原体引起的败血症。哌拉西林和阿洛西林是对铜绿假单胞菌活性最强的广谱青霉素。在第三代头孢菌素中,头孢哌酮和头孢他啶具有抗铜绿假单胞菌活性。发现头孢他啶在体外对铜绿假单胞菌的活性比头孢哌酮或哌拉西林更强。对其他药物耐药的革兰氏阴性菌的新型抗生素有碳青霉烯类、氨曲南、喹诺酮类和异帕米星。肠球菌可用一种细胞壁活性药物(如青霉素、氨苄西林或万古霉素)和一种氨基糖苷类抗生素治疗。葡萄球菌对耐青霉素酶的青霉素(如苯唑西林、萘夫西林和甲氧西林)敏感。耐药菌株对万古霉素均敏感。青霉素或万古霉素与氨基糖苷类抗生素联合使用比单独使用任何一种药物产生的杀菌效果更快。