Takagi H, King G L, Aiello L P
Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.
Diabetes. 1998 Sep;47(9):1480-8. doi: 10.2337/diabetes.47.9.1480.
Elevation of intracellular glucose within retinal vascular cells is believed to be an important causal factor in the development of diabetic retinopathy. The intracellular glucose concentration is regulated by both the rate of glucose metabolism and glucose transport. Because retinal hypoxia often precedes proliferative diabetic retinopathy, we have studied the regulation of the glucose transport system by hypoxia in cultured bovine retinal endothelial cells (BRECs). Because retinal ischemia is known to increase intracellular adenosine levels, which subsequently regulate hypoxia-inducible genes, such as vascular endothelial growth factor and erythropoietin, the role of adenosine and its receptor-mediated pathways has also been evaluated. Hypoxia (0.5% O2, 5% CO2, and 94.5% N2) stimulated GLUT1 mRNA expression in BRECs in a time-dependent manner with an 8.9 +/- 1.5-fold (P < 0.01) increase observed after 12 h. GLUT1 mRNA expression returned to baseline (1.4 +/- 0.3-fold of control) within 12 h after reinstitution of normoxia. N6-Cyclopentyl adenosine (adenosine A1 receptor agonist, Kd = 1 nmol/l) did not affect GLUT1 mRNA expression at concentrations up to 1 micromol/l, while 2-p-(2-carboxyethyl)-phenethyl-amino-5'-N-ethylcarboxamidoadenosine and 5'-(N-ethylcalboxamido)-adenosine (adenosine A2 receptor [A2R] agonists, Kd = 15 and 16 nmol/l, respectively) increased mRNA levels at concentrations as low as 10 nmol/l. Maximal stimulation was 2.3 +/- 0.2- and 2.1 +/- 0.2-fold, respectively (P < 0.01). The adenosine A2a receptor antagonist 8-(3-chlorostyryl)caffeine (CSC) (Kd = 100 nmol/l for A2R) inhibited hypoxia-stimulated GLUT1 mRNA expression by 40 +/- 8% at 100 nmo/l. Hypoxia upregulated GLUT1 protein expression by 3.0 +/- 0.3-fold after 12 h (P < 0.01), but this response was attenuated by CSC (P < 0.05). Hypoxia increased glucose transport activity by 2.1 +/- 0.3-fold (P < 0.001) after 12 h, a response inhibited 65% by CSC (P < 0.01). A protein kinase A (PKA) inhibitor (H89, 20 micromol/l) suppressed hypoxia-induced GLUT1 mRNA expression by 42 +/- 9% (P < 0.01). These data suggest that hypoxia in BRECs upregulates glucose transport activity through an increase of GLUT1 expression that is partially mediated by adenosine, A2R, and the cAMP-PKA pathway.
视网膜血管细胞内葡萄糖水平升高被认为是糖尿病视网膜病变发生发展的一个重要致病因素。细胞内葡萄糖浓度受葡萄糖代谢速率和葡萄糖转运的共同调节。由于视网膜缺氧通常先于增殖性糖尿病视网膜病变出现,我们研究了缺氧对培养的牛视网膜内皮细胞(BRECs)中葡萄糖转运系统的调节作用。已知视网膜缺血会增加细胞内腺苷水平,进而调节缺氧诱导基因,如血管内皮生长因子和促红细胞生成素,因此也评估了腺苷及其受体介导途径的作用。缺氧(0.5% O₂、5% CO₂和94.5% N₂)以时间依赖性方式刺激BRECs中GLUT1 mRNA表达,12小时后观察到增加8.9±1.5倍(P<0.01)。恢复常氧后12小时内,GLUT1 mRNA表达恢复至基线水平(对照的1.4±0.3倍)。N6-环戊基腺苷(腺苷A1受体激动剂,Kd = 1 nmol/l)在浓度高达1 μmol/l时不影响GLUT1 mRNA表达,而2-对-(2-羧乙基)-苯乙胺基-5'-N-乙基羧酰胺腺苷和5'-(N-乙基羧酰胺)-腺苷(腺苷A2受体[A2R]激动剂,Kd分别为15和16 nmol/l)在低至10 nmol/l的浓度下即可增加mRNA水平。最大刺激分别为2.3±0.2倍和2.1±0.2倍(P<0.01)。腺苷A2a受体拮抗剂8-(3-氯苯乙烯基)咖啡因(CSC)(对A2R的Kd = 100 nmol/l)在100 nmol/l时可抑制缺氧刺激的GLUT1 mRNA表达40±8%。缺氧12小时后使GLUT1蛋白表达上调3.0±0.3倍(P<0.01),但该反应被CSC减弱(P<0.05)。缺氧12小时后使葡萄糖转运活性增加2.1±0.3倍(P<0.001),该反应被CSC抑制65%(P<0.01)。蛋白激酶A(PKA)抑制剂(H89,20 μmol/l)可抑制缺氧诱导的GLUT1 mRNA表达42±9%(P<0.01)。这些数据表明,BRECs中的缺氧通过增加GLUT1表达上调葡萄糖转运活性,这一过程部分由腺苷、A2R和cAMP-PKA途径介导。