Suppr超能文献

Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column.

作者信息

Bratina BJ, Stevenson BS, Green WJ, Schmidt TM

机构信息

Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

Appl Environ Microbiol. 1998 Oct;64(10):3791-7. doi: 10.1128/AEM.64.10.3791-3797.1998.

Abstract

Depth profiles of metals in Lake Vanda, a permanently ice-covered, stratified Antarctic lake, suggest the importance of particulate manganese oxides in the scavenging, transport, and release of metals. Since manganese oxides can be solubilized by manganese-reducing bacteria, microbially mediated manganese reduction was investigated in Lake Vanda. Microbes concentrated from oxic regions of the water column, encompassing a peak of soluble manganese [Mn(II)], reduced synthetic manganese oxides (MnO2) when incubated aerobically. Pure cultures of manganese-reducing bacteria were readily isolated from waters collected near the oxic Mn(II) peak. Based on phylogenetic analysis of the 16S rRNA gene sequence, most of the isolated manganese reducers belong to the genus Carnobacterium. Cultures of a phylogenetically representative strain of Carnobacterium reduced synthetic MnO2 in the presence of sodium azide, as was seen in field assays. Unlike anaerobes that utilize manganese oxides as terminal electron acceptors in respiration, isolates of the genus Carnobacterium reduced Mn(IV) via a diffusible compound under oxic conditions. The release of adsorbed trace metals accompanying the solubilization of manganese oxides may provide populations of Carnobacterium with a source of nutrients in this extremely oligotrophic environment.

摘要

相似文献

1
Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column.
Appl Environ Microbiol. 1998 Oct;64(10):3791-7. doi: 10.1128/AEM.64.10.3791-3797.1998.
2
Metal dynamics in Lake Vanda (Wright Valley, Antarctica).
Chem Geol. 1989;76:85-94. doi: 10.1016/0009-2541(89)90129-0.
3
Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica.
Microorganisms. 2015 Jul 24;3(3):391-406. doi: 10.3390/microorganisms3030391.
4
A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica.
Appl Environ Microbiol. 2015 Mar;81(6):1988-95. doi: 10.1128/AEM.03968-14. Epub 2015 Jan 9.
5
Bacteriogenic manganese oxides.
Acc Chem Res. 2010 Jan 19;43(1):2-9. doi: 10.1021/ar800232a.
6
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
7
Microbial oxidation and reduction of manganese: consequences in groundwater and applications.
FEMS Microbiol Rev. 1994 Aug;14(4):339-49. doi: 10.1111/j.1574-6976.1994.tb00108.x.
10
Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese.
J Great Lakes Res. 1998;24(1):93-104. doi: 10.1016/s0380-1330(98)70802-0.

引用本文的文献

1
A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica.
Sci Rep. 2023 Jan 5;13(1):177. doi: 10.1038/s41598-022-27219-2.
2
Lipid Biomarkers From Microbial Mats on the McMurdo Ice Shelf, Antarctica: Signatures for Life in the Cryosphere.
Front Microbiol. 2022 Jun 10;13:903621. doi: 10.3389/fmicb.2022.903621. eCollection 2022.
4
Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica.
Microorganisms. 2015 Jul 24;3(3):391-406. doi: 10.3390/microorganisms3030391.
5
Aerobic and anaerobic reduction of birnessite by a novel Dietzia strain.
Geochem Trans. 2015 Aug 8;16:11. doi: 10.1186/s12932-015-0026-0. eCollection 2015.
6
A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica.
Appl Environ Microbiol. 2015 Mar;81(6):1988-95. doi: 10.1128/AEM.03968-14. Epub 2015 Jan 9.
8
Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):666-71. doi: 10.1073/pnas.1209793110. Epub 2012 Dec 24.

本文引用的文献

2
Cycling of manganese and iron in Lake Mendota, Wisconsin.
Environ Sci Technol. 1986 May;20(5):449-57. doi: 10.1021/es00147a002.
3
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
4
Microbial manganese reduction by enrichment cultures from coastal marine sediments.
Appl Environ Microbiol. 1985 Aug;50(2):491-7. doi: 10.1128/aem.50.2.491-497.1985.
5
6
The Ribosomal Database Project (RDP).
Nucleic Acids Res. 1996 Jan 1;24(1):82-5. doi: 10.1093/nar/24.1.82.
7
Dissimilatory metal reduction.
Annu Rev Microbiol. 1993;47:263-90. doi: 10.1146/annurev.mi.47.100193.001403.
8
fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput Appl Biosci. 1994 Feb;10(1):41-8. doi: 10.1093/bioinformatics/10.1.41.
9
Microbial oxidation and reduction of manganese: consequences in groundwater and applications.
FEMS Microbiol Rev. 1994 Aug;14(4):339-49. doi: 10.1111/j.1574-6976.1994.tb00108.x.
10
Biology of iron- and manganese-depositing bacteria.
Annu Rev Microbiol. 1984;38:515-50. doi: 10.1146/annurev.mi.38.100184.002503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验