Suppr超能文献

丹麦SF-36数据质量、量表假设及信度测试。

Tests of data quality, scaling assumptions, and reliability of the Danish SF-36.

作者信息

Bjorner J B, Damsgaard M T, Watt T, Groenvold M

机构信息

Institute of Public Health, University of Copenhagen, Denmark.

出版信息

J Clin Epidemiol. 1998 Nov;51(11):1001-11. doi: 10.1016/s0895-4356(98)00092-4.

Abstract

We used general population data (n = 4084) to examine data completeness, response consistency, tests of scaling assumptions, and reliability of the Danish SF-36 Health Survey. We compared traditional multitrait scaling analyses to analyses using polychoric correlations and Spearman correlations. The frequency of missing values was low, except for elderly people and people with lower levels of education. Response consistency was high and compared well with results for the U.S. SF-36. For respondents with computable scales in all eight domains, scaling assumptions (item internal consistency, item discriminant validity, equal item-own scale correlations, and equal variances) were satisfactory in the total sample and in all subgroups. The SF-36 could discriminate between levels of health in all subgroups, but there were skewness, kurtosis, and ceiling effects in many subgroups (elderly people and people with chronic diseases excepted). Concerning correlation methods, we found interesting differences indicating advantages of using methods that do not assume a normal distribution of answers as an addition to traditional methods.

摘要

我们使用一般人群数据(n = 4084)来检验丹麦SF - 36健康调查的数据完整性、应答一致性、量表假设检验及信度。我们将传统的多特质量表分析与使用多态相关和斯皮尔曼相关的分析进行了比较。除了老年人和受教育程度较低的人群外,缺失值的频率较低。应答一致性较高,与美国SF - 36的结果相当。对于在所有八个领域都有可计算量表的受访者,量表假设(项目内部一致性、项目区分效度、项目与自身量表的相等相关性以及相等方差)在总样本和所有亚组中均令人满意。SF - 36能够区分所有亚组的健康水平,但许多亚组存在偏态、峰态和天花板效应(老年人和患有慢性病的人群除外)。关于相关方法,我们发现了有趣的差异,表明除传统方法外,使用不假设答案呈正态分布的方法具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验