Wu H, Ding A A, De Gruttola V
Frontier Science & Technology Research Foundation, Chestnut Hill, MA 02167-2104, USA.
Stat Med. 1998 Nov 15;17(21):2463-85. doi: 10.1002/(sici)1097-0258(19981115)17:21<2463::aid-sim939>3.0.co;2-a.
Investigation of HIV viral dynamics is important for understanding the HIV pathogenesis and for development of treatment strategies. Perelson et al. demonstrated that simple viral dynamic models fit to data on viral load as measured by plasma HIV-RNA could produce estimates of rates of clearance of virus and of infected CD4+ T-lymphocytes. In this paper we extend the work of Perelson et al. by proposing models with less restrictive assumptions about drug activity. Our models take into account the fact that infectious and non-infectious virions are produced by infected T-cells both before and after the treatment. We also show that direct measurement of infectious virus load provides sufficient information for estimation of antiretroviral drug efficacy parameter. For characterizing viral dynamics of populations and estimation of dynamic parameters, we propose a hierarchical non-linear model. Compared to other methods such as the non-linear least square method used by Perelson et al., we show that the proposed approach has the following advantages: (i) it is more appropriate for modelling within-patient and between-patient variation and to characterize the population dynamics; (ii) it is flexible enough to deal with both rich and sparse individual data; (iii) it has more power to detect model misspecification; (iv) it allows incorporation of covariates for viral dynamic parameters; (v) it makes more efficient use of between-subject information to get better parameter estimates. We give two simulation examples to illustrate the proposed approach and its advantages. Finally, we discuss practical issues regarding the clinical trial design for viral dynamic studies.
研究HIV病毒动力学对于理解HIV发病机制和制定治疗策略至关重要。佩雷尔森等人证明,将简单的病毒动力学模型与通过血浆HIV-RNA测量的病毒载量数据拟合,可以得出病毒清除率和受感染CD4+ T淋巴细胞清除率的估计值。在本文中,我们扩展了佩雷尔森等人的工作,提出了关于药物活性假设限制较少的模型。我们的模型考虑到了在治疗前后,受感染的T细胞会产生感染性和非感染性病毒粒子这一事实。我们还表明,直接测量感染性病毒载量为估计抗逆转录病毒药物疗效参数提供了足够的信息。为了表征群体的病毒动力学和估计动力学参数,我们提出了一种分层非线性模型。与佩雷尔森等人使用的非线性最小二乘法等其他方法相比,我们表明所提出的方法具有以下优点:(i)它更适合对患者内和患者间的变异进行建模,并表征群体动力学;(ii)它足够灵活,可以处理丰富和稀疏的个体数据;(iii)它有更强的能力检测模型设定错误;(iv)它允许纳入病毒动力学参数的协变量;(v)它能更有效地利用个体间信息以获得更好的参数估计。我们给出两个模拟示例来说明所提出的方法及其优点。最后,我们讨论了关于病毒动力学研究的临床试验设计的实际问题。