Meyer-Bernstein E L, Morin L P
Graduate Program in Neurobiology and Behavior, State University of New York, Stony Brook 11794, USA.
J Biol Rhythms. 1998 Dec;13(6):494-505. doi: 10.1177/074873098129000327.
Systematic treatment of hamsters with triazolam (TRZ) or novel wheel (NW) access will yield PRCs similar to those for neuropeptide Y. Both TRZ and NW access require an intact intergeniculate leaflet (IGL) to modulate circadian rhythm phase. It is commonly suggested that both stimulus types influence rhythm phase response via a mechanism associated with drug-induced or wheel access-associated locomotion. Furthermore, there have been suggestions that one or both of these stimulus conditions require an intact serotonergic system for modulation of rhythm phase. The present study investigated these issues by making serotonin neuron-specific neurotoxic lesions of the median or dorsal raphe nuclei and evaluating phase response of the hamster circadian locomotor rhythm to TRZ treatment or NW access. The expected effect of TRZ injected at CT 6 h on the average phase advance was virtually eliminated by destruction of serotonin neurons in the median, but not the dorsal, raphe nucleus. No control or lesioned animal engaged in substantial wheel running in response to TRZ. By contrast, all median raphe-lesioned hamsters that engaged in substantial amounts of running when given access to a NW had phase shifts comparable to control or dorsal raphe-lesioned animals. The results demonstrate that serotonergic neurons in the median raphe nucleus contribute to the regulation of rhythm phase response to TRZ and that it is unlikely that these neurons are necessary for phase response to NW access. The data further suggest the presence of separate pathways mediating phase response to the two stimulus conditions. These pathways converge on the IGL, a nucleus afferent to the circadian clock, that is necessary for the expression of phase response to each stimulus type.
用三唑仑(TRZ)或新型转轮(NW)对仓鼠进行系统治疗,将产生与神经肽Y相似的相位反应曲线(PRC)。TRZ和NW的使用都需要完整的膝间小叶(IGL)来调节昼夜节律相位。通常认为,这两种刺激类型都是通过与药物诱导或转轮使用相关的运动机制来影响节律相位反应的。此外,有人提出,这两种刺激条件中的一种或两种都需要完整的5-羟色胺能系统来调节节律相位。本研究通过对中缝核或背缝核进行5-羟色胺能神经元特异性神经毒性损伤,并评估仓鼠昼夜运动节律对TRZ治疗或NW使用的相位反应,来研究这些问题。在CT 6小时注射TRZ对平均相位提前的预期效果,在中缝核而非背缝核中5-羟色胺能神经元被破坏后几乎消失。没有对照或损伤动物因TRZ而进行大量转轮运动。相比之下,所有在有NW时进行大量跑步的中缝核损伤仓鼠的相位变化与对照或背缝核损伤动物相当。结果表明,中缝核中的5-羟色胺能神经元有助于调节对TRZ的节律相位反应,并且这些神经元对于对NW使用的相位反应不太可能是必需的。数据进一步表明存在介导对两种刺激条件的相位反应的独立途径。这些途径汇聚到IGL,一个向昼夜节律钟传入的核,它对于每种刺激类型的相位反应表达是必需的。