Ladokhin A S, White S H
Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA, 92697-4560, USA.
J Mol Biol. 1999 Jan 29;285(4):1363-9. doi: 10.1006/jmbi.1998.2346.
Membranes have a potent ability to promote secondary structure formation in a wide range of membrane-active peptides, believed to be due to a reduction through hydrogen bonding of the energetic cost of partitioning peptide bonds. This process is of fundamental importance for understanding the mechanism of action of toxins and antimicrobial peptides and the stability of membrane proteins. A classic example of membrane-induced folding is the bee-venom peptide melittin that is largely unstructured when free in solution, but strongly adopts an amphipathic alpha-helical conformation when partitioned into membranes. We have determined the energetics of melittin helix formation through measurements of the partitioning free energies and the helicities of native melittin and of a diastereomeric analog with four d-amino acids (d4,l-melittin). Because D4,l-melittin has little secondary structure in either the free or bound forms, it serves as a model for the experimentally inaccessible unfolded bound form of native melittin. The partitioning of native melittin into large unilamellar phosphocholine vesicles is 5.0(+/-0.7) kcal mol-1 more favorable than the partitioning of d4,l-melittin (1 cal=4.186 J). Differences in the circular dichroism spectra of the two forms of melittin indicate that bound native melittin is more helical than bound d4, l-melittin by about 12 residues. These findings disclose that the free energy reduction per residue accompanying the folding of melittin in membrane interfaces is about 0.4 kcal mol-1, consistent with the hypothesis that hydrogen bonding reduces the high cost of partitioning peptide bonds. A value of 0.6 kcal mol-1 per residue has been observed for beta-sheet formation by a hexapeptide model system. These two values provide a useful rule of thumb for estimating the energetic consequences of membrane-induced secondary structure formation.
膜具有强大的能力,能促进多种膜活性肽的二级结构形成,据信这是由于通过氢键作用降低了肽键分配的能量成本。这一过程对于理解毒素和抗菌肽的作用机制以及膜蛋白的稳定性至关重要。膜诱导折叠的一个经典例子是蜂毒肽蜂毒素,它在溶液中自由存在时基本无结构,但在分配到膜中时会强烈形成两亲性α-螺旋构象。我们通过测量天然蜂毒素以及具有四个d-氨基酸的非对映体类似物(d4,l-蜂毒素)的分配自由能和螺旋度,确定了蜂毒素螺旋形成的能量学。由于d4,l-蜂毒素在自由或结合形式下几乎没有二级结构,它可作为天然蜂毒素实验上无法获得的未折叠结合形式的模型。天然蜂毒素分配到大单层磷酸胆碱囊泡中的情况比d4,l-蜂毒素的分配情况更有利,差值为5.0(±0.7)kcal mol-1(1 cal = 4.186 J)。两种形式的蜂毒素的圆二色光谱差异表明,结合的天然蜂毒素比结合的d4,l-蜂毒素的螺旋度大约多12个残基。这些发现揭示,蜂毒素在膜界面折叠时每个残基的自由能降低约为0.4 kcal mol-1,这与氢键降低肽键分配高成本的假设一致。在一个六肽模型系统中,观察到β-折叠形成时每个残基的值为0.6 kcal mol-1。这两个值为估计膜诱导二级结构形成的能量后果提供了一个有用的经验法则。