Suppr超能文献

O-侧链脂多糖化学对金属结合的影响。

Effect of O-side-chain-lipopolysaccharide chemistry on metal binding.

作者信息

Langley S, Beveridge T J

机构信息

Department of Microbiology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

出版信息

Appl Environ Microbiol. 1999 Feb;65(2):489-98. doi: 10.1128/AEM.65.2.489-498.1999.

Abstract

Pseudomonas aeruginosa PAO1 produces two chemically distinct types of lipopolysaccharides (LPSs), termed A-band LPS and B-band LPS. The A-band O-side chain is electroneutral at physiological pH, while the B-band O-side chain contains numerous negatively charged sites due to the presence of uronic acid residues in the repeat unit structure. Strain PAO1 (A+ B+) and three isogenic LPS mutants (A+ B-, A- B+, and A- B-) were studied to determine the contribution of the O-side-chain portion of LPS to metal binding by the surfaces of gram-negative cells. Transmission electron microscopy with energy-dispersive X-ray spectroscopy was used to locate and analyze sites of metal deposition, while atomic absorption spectrophotometry and inductively coupled plasma-mass spectrometry were used to perform bulk quantitation of bound metal. The results indicated that cells of all of the strains caused the precipitation of gold as intracellular, elemental crystals with a d-spacing of 2.43 A. This type of precipitation has not been reported previously for gram-negative cells and suggests that in the organisms studied gold binding is not a surface-mediated event. All four strains bound similar amounts of copper (0.213 to 0.222 micromol/mg [dry weight] of cells) at the cell surface, suggesting that the major surface metal-binding sites reside in portions of the LPS which are common to all strains (perhaps the phosphoryl groups in the core-lipid A region). However, significant differences were observed in the abilities of strains dps89 (A- B+) and AK1401 (A+ B-) to bind iron and lanthanum, respectively. Strain dps89 caused the precipitation of iron (1.623 micromol/mg [dry weight] of cells) as an amorphous mineral phase (possibly iron hydroxide) on the cell surface, while strain AK1401 nucleated precipitation of lanthanum (0.229 micromol/mg [dry weight] of cells) as apiculate, surface-associated crystals. Neither iron nor lanthanum precipitates were observed on the cells of other strains, which suggests that the combination of A-band LPS and B-band LPS produced by a cell may result in a cell surface which promotes the formation of metal-rich precipitates. We therefore propose that the negatively charged sites located in the O-side chains are not directly responsible for the binding of metallic ions; however, the B-band LPS molecule as a whole may contribute to overall cell surface properties which favor the precipitation of distinct metal-rich mineral phases.

摘要

铜绿假单胞菌PAO1产生两种化学性质不同的脂多糖(LPS),分别称为A带LPS和B带LPS。A带O侧链在生理pH值下呈电中性,而B带O侧链由于重复单元结构中存在糖醛酸残基而含有许多带负电荷的位点。研究了菌株PAO1(A + B +)和三个同基因LPS突变体(A + B -、A - B +和A - B -),以确定LPS的O侧链部分对革兰氏阴性细胞表面金属结合的贡献。使用带有能量色散X射线光谱的透射电子显微镜来定位和分析金属沉积位点,同时使用原子吸收分光光度法和电感耦合等离子体质谱法对结合的金属进行总量定量。结果表明,所有菌株的细胞都会导致金沉淀为细胞内的元素晶体,其d间距为2.43 Å。这种沉淀类型以前在革兰氏阴性细胞中尚未报道,这表明在所研究的生物体中,金结合不是表面介导的事件。所有四种菌株在细胞表面结合的铜量相似(0.213至0.222 μmol/mg[干重]细胞),这表明主要的表面金属结合位点位于所有菌株共有的LPS部分(可能是核心脂质A区域中的磷酸基团)。然而,观察到菌株dps89(A - B +)和AK1401(A + B -)分别结合铁和镧的能力存在显著差异。菌株dps89导致铁(1.623 μmol/mg[干重]细胞)沉淀为细胞表面的无定形矿物相(可能是氢氧化铁),而菌株AK1401使镧(0.229 μmol/mg[干重]细胞)沉淀为针状、与表面相关的晶体。在其他菌株的细胞上未观察到铁或镧沉淀,这表明细胞产生的A带LPS和B带LPS的组合可能导致细胞表面促进富含金属的沉淀物的形成。因此,我们提出位于O侧链中的带负电荷的位点并非直接负责金属离子的结合;然而,B带LPS分子作为一个整体可能有助于整体细胞表面性质,有利于形成独特的富含金属的矿物相。

相似文献

1
Effect of O-side-chain-lipopolysaccharide chemistry on metal binding.
Appl Environ Microbiol. 1999 Feb;65(2):489-98. doi: 10.1128/AEM.65.2.489-498.1999.
6
Importance of LPS structure on protein interactions with Pseudomonas aeruginosa.
Colloids Surf B Biointerfaces. 2008 Nov 15;67(1):115-21. doi: 10.1016/j.colsurfb.2008.08.013. Epub 2008 Aug 23.
8
Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.
J Bacteriol. 2011 Mar;193(5):1259-66. doi: 10.1128/JB.01308-10. Epub 2010 Dec 10.

引用本文的文献

1
Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence.
PLoS Pathog. 2024 Dec 2;20(12):e1012221. doi: 10.1371/journal.ppat.1012221. eCollection 2024 Dec.
2
Antibacterial efficacy of copper-based metal-organic frameworks against and .
RSC Adv. 2024 May 15;14(22):15821-15831. doi: 10.1039/d4ra01241k. eCollection 2024 May 10.
3
New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance.
Ann N Y Acad Sci. 2023 Jan;1519(1):46-62. doi: 10.1111/nyas.14921. Epub 2022 Nov 7.
4
templated iron oxide biomineralization under oscillation.
RSC Adv. 2021 Apr 21;11(25):15010-15016. doi: 10.1039/d1ra00847a.
7
Antibacterial Activity of Lactic Acid Producing QZ1178 Against Pathogenic .
Front Vet Sci. 2021 Apr 22;8:630294. doi: 10.3389/fvets.2021.630294. eCollection 2021.
8
Dual-Function Potentiation by PEG-BPEI Restores Activity of Carbapenems and Penicillins against Carbapenem-Resistant .
ACS Infect Dis. 2021 Jun 11;7(6):1657-1665. doi: 10.1021/acsinfecdis.0c00863. Epub 2021 May 4.
9
Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics.
ACS Pharmacol Transl Sci. 2020 Dec 29;4(1):8-54. doi: 10.1021/acsptsci.0c00174. eCollection 2021 Feb 12.

本文引用的文献

3
Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis.
J Bacteriol. 1993 Apr;175(7):1936-45. doi: 10.1128/jb.175.7.1936-1945.1993.
4
Major sites of metal binding in Bacillus licheniformis walls.
J Bacteriol. 1982 Jun;150(3):1438-48. doi: 10.1128/jb.150.3.1438-1448.1982.
5
Binding of metals to cell envelopes of Escherichia coli K-12.
Appl Environ Microbiol. 1981 Aug;42(2):325-35. doi: 10.1128/aem.42.2.325-335.1981.
6
Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall.
J Bacteriol. 1980 Jul;143(1):471-80. doi: 10.1128/jb.143.1.471-480.1980.
7
Sites of metal deposition in the cell wall of Bacillus subtilis.
J Bacteriol. 1980 Feb;141(2):876-87. doi: 10.1128/jb.141.2.876-887.1980.
10
Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide.
Can J Microbiol. 1986 Jan;32(1):52-5. doi: 10.1139/m86-010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验