Suppr超能文献

偏最小二乘法与人工神经网络在药物样品非线性分光光度分析中的互补应用。

Complementary use of partial least-squares and artificial neural networks for the non-linear spectrophotometric analysis of pharmaceutical samples.

作者信息

Goicoechea Héctor C, Collado María S, Satuf María L, Olivieri Alejandro C

机构信息

Laboratorio de Control de Calidad de Medicamentos, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe (3000), Argentina.

出版信息

Anal Bioanal Chem. 2002 Oct;374(3):460-5. doi: 10.1007/s00216-002-1435-3. Epub 2002 Sep 6.

Abstract

The complementary use of partial least-squares (PLS) multivariate calibration and artificial neural networks (ANNs) for the simultaneous spectrophotometric determination of three active components in a pharmaceutical formulation has been explored. The presence of non-linearities caused by chemical interactions was confirmed by a recently discussed methodology based on Mallows augmented partial residual plots. Ternary mixtures of chlorpheniramine, naphazoline and dexamethasone in a matrix of excipients have been resolved by using PLS for the two major analytes (chlorpheniramine and naphazoline) and ANNs for the minor one (dexamethasone). Notwithstanding the large number of constituents, their high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. No extraction procedures using non-aqueous solvents are required.

摘要

研究了偏最小二乘法(PLS)多元校准与人工神经网络(ANNs)互补用于同时分光光度法测定药物制剂中三种活性成分的情况。基于马洛斯增强偏残差图的一种最近讨论的方法证实了由化学相互作用引起的非线性的存在。通过使用PLS分析两种主要分析物(氯苯那敏和萘甲唑啉)以及使用ANNs分析次要分析物(地塞米松),已解析了辅料基质中氯苯那敏、萘甲唑啉和地塞米松的三元混合物。尽管成分数量众多、光谱重叠程度高且存在非线性,但仍实现了快速同时分析,具有相当好的准确度和精密度。无需使用非水溶剂的萃取程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验