Suppr超能文献

Marginal singularities, almost invariant sets, and small perturbations of chaotic dynamical systems.

作者信息

Blank M. L.

机构信息

N. I. Vavilov Institute of General Genetics, USSR Academy of Sciences, Gubkin Street 3, 117809 Moscow B-333, USSR.

出版信息

Chaos. 1991 Oct;1(3):347-356. doi: 10.1063/1.165846.

Abstract

For a class of piecewise monotone locally noncontracting maps f:X-->X with small "traps" Y( varepsilon ) subset, dbl equals X (diam(Y( varepsilon ))</= varepsilon ), the existence of smooth conditionally f-invariant measures &mgr;( varepsilon ) are proved, corresponding to a limit as n--> infinity conditional probabilities that f(n+1)x in X\Y( varepsilon ) if x,fx,.,f(nx) in X\Y( varepsilon ) and the point x is chosen at random. Also proven is the convergence of &mgr;( varepsilon ) to smooth f-invariant measures as varepsilon -->0. By means of this construction, the numerical phenomenon of the convergence of histograms of trajectories of maps with marginal singularities to densities of nonfinite smooth invariant measures in the computer modeling was investigated.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验