Inferelator:一种用于从头开始从系统生物学数据集中学习简约调控网络的算法。

The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo.

作者信息

Bonneau Richard, Reiss David J, Shannon Paul, Facciotti Marc, Hood Leroy, Baliga Nitin S, Thorsson Vesteinn

机构信息

New York University, Biology Department, Center for Comparative Functional Genomics, New York, NY 10003, USA.

出版信息

Genome Biol. 2006;7(5):R36. doi: 10.1186/gb-2006-7-5-r36. Epub 2006 May 10.

Abstract

We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified.

摘要

我们提出了一种推导全基因组转录调控相互作用的方法(Inferelator),并将该方法应用于预测古菌嗜盐杆菌NRC-1的大部分调控网络。Inferelator利用回归和变量选择,基于基因组注释和表达数据的整合来识别对基因的转录影响。所构建的网络成功预测了嗜盐杆菌在新的扰动下的全局表达,其预测能力与在训练数据上观察到的相似。对几个特定的调控预测进行了实验测试和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0d/1779511/eebf7696281e/gb-2006-7-5-r36-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索