内嗅皮层网格细胞可通过竞争学习映射至海马体位置细胞。

Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning.

作者信息

Rolls Edmund T, Stringer Simon M, Elliot Thomas

机构信息

Centre for Computational Neuroscience, Department of Experimental Psychology, Oxford University, South Parks Road, Oxford, UK.

出版信息

Network. 2006 Dec;17(4):447-65. doi: 10.1080/09548980601064846.

Abstract

'Grid cells' in the dorsocaudal medial entorhinal cortex (dMEC) are activated when a rat is located at any of the vertices of a grid of equilateral triangles covering the environment. dMEC grid cells have different frequencies and phase offsets. However, cells in the dentate gyrus (DG) and hippocampal area CA3 of the rodent typically display place fields, where individual cells are active over only a single portion of the space. In a model of the hippocampus, we have shown that the connectivity from the entorhinal cortex to the dentate granule cells could allow the dentate granule cells to operate as a competitive network to recode their inputs to produce sparse orthogonal representations, and this includes spatial pattern separation. In this paper we show that the same computational hypothesis can account for the mapping of EC grid cells to dentate place cells. We show that the learning in the competitive network is an important part of the way in which the mapping can be achieved. We further show that incorporation of a short term memory trace into the associative learning can help to produce the relatively broad place fields found in the hippocampus.

摘要

当大鼠位于覆盖环境的等边三角形网格的任何一个顶点时,背尾内侧内嗅皮层(dMEC)中的“网格细胞”就会被激活。dMEC网格细胞具有不同的频率和相位偏移。然而,啮齿动物齿状回(DG)和海马体CA3区的细胞通常显示出位置野,其中单个细胞仅在空间的单个部分活跃。在一个海马体模型中,我们已经表明,从内嗅皮层到齿状颗粒细胞的连接性可以使齿状颗粒细胞作为一个竞争网络来重新编码其输入,以产生稀疏的正交表示,这包括空间模式分离。在本文中,我们表明相同的计算假设可以解释从内嗅皮层网格细胞到齿状位置细胞的映射。我们表明,竞争网络中的学习是实现这种映射方式的一个重要部分。我们进一步表明,将短期记忆痕迹纳入联想学习可以帮助产生在海马体中发现的相对较宽的位置野。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索