整合生物医学知识以构建前列腺癌进展途径模型。

Integrating biomedical knowledge to model pathways of prostate cancer progression.

作者信息

Morris David S, Tomlins Scott A, Rhodes Daniel R, Mehra Rohit, Shah Rajal B, Chinnaiyan Arul M

机构信息

Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.

出版信息

Cell Cycle. 2007 May 15;6(10):1177-87. doi: 10.4161/cc.6.10.4247. Epub 2007 May 5.

Abstract

Due to pathologic, histologic, and biologic variation within prostate cancers, profiling the genetic changes associated with disease progression has been difficult. Although initial integration of data from profiling studies had been limited by platform variation, bioinformatic tools and analytic techniques have enabled integrative analysis of profiling studies and the identification of more robust and valid profiles. The identification of key transition points in the progression of prostate cancer relies on profiling precursor lesions and "pure" cell populations. Utilizing laser-capture microdissection to isolate 101 cell populations, a more specific genetic profile of progression from benign epithelium to metastatic disease was obtained. This laser-capture profile was analyzed in the context of the molecular concepts map (MCM), a compendium of over 20,000 molecular concepts including other expression profiles of prostate cancer, to obtain an integrative molecular model of progression. The conceptual connections associated with progression confirm that prostate cancer biology is largely driven by pathways related to androgen signaling and epithelial cell biology; however, further analysis of concepts associated with progression suggests stromal factors are highly associated with progression of prostate cancer. The effect of stromal signatures on the progression model suggests the impact of stromal signature downregulation may reflect both a change in the epithelia:stroma ratio within higher grade tumors and also a microenvironment influence on prostate epithelia. Analyzing complex gene expression signatures in the context of molecular concepts improves integrative models and may improve detection, prognostication, or targeted therapy.

摘要

由于前列腺癌存在病理、组织学和生物学差异,描绘与疾病进展相关的基因变化一直很困难。尽管最初来自分析研究的数据整合受到平台差异的限制,但生物信息学工具和分析技术已能够对分析研究进行综合分析,并识别出更可靠和有效的特征。前列腺癌进展中关键转变点的识别依赖于对前驱病变和“纯”细胞群体的分析。利用激光捕获显微切割技术分离出101个细胞群体,获得了从良性上皮到转移性疾病进展的更具特异性的基因特征。在分子概念图谱(MCM)的背景下分析这种激光捕获特征,MCM是一个包含2万多个分子概念的汇编,包括前列腺癌的其他表达谱,以获得进展的综合分子模型。与进展相关的概念联系证实,前列腺癌生物学在很大程度上由与雄激素信号传导和上皮细胞生物学相关的途径驱动;然而,对与进展相关概念的进一步分析表明,基质因素与前列腺癌进展高度相关。基质特征对进展模型的影响表明,基质特征下调的影响可能既反映了高级别肿瘤中上皮:基质比例的变化,也反映了微环境对前列腺上皮的影响。在分子概念背景下分析复杂的基因表达特征可改善综合模型,并可能改善检测、预后或靶向治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索