固定在低污染表面上的生物活性微阵列用于研究特定的内皮细胞黏附。

Bioactive microarrays immobilized on low-fouling surfaces to study specific endothelial cell adhesion.

作者信息

Monchaux Emmanuelle, Vermette Patrick

机构信息

Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada.

出版信息

Biomacromolecules. 2007 Nov;8(11):3668-73. doi: 10.1021/bm7007907. Epub 2007 Oct 16.

Abstract

With the aim to study how to modulate the specific endothelial cell patterning and responses on biomaterials surfaces, bioactive microarrays were developed and validated for specific cell patterning. These microarrays were made of low-fouling surfaces, that prevent nonspecific cell adhesion, bearing bioactive molecules at given known locations by presenting specific ligands to cell receptors. Arrays of bioactive molecules (RGD, REDV, and SVVYGLR sequences and vascular endothelial growth factor (VEGF)) were immobilized on a carboxy-methyl-dextran low-fouling surface and were exposed to human endothelial cells and fibroblasts to screen for the effect of bioactive spot molecular composition on cell adhesion. Endothelial cells only were sensitive to RGD peptide co-immobilized with REDV or SVVYGLR sequences: they induced a reduction in cell spreading and a loss of actin stress fibers. RGD co-immobilized with VEGF also resulted in the reorganization of actin filaments and focal points in endothelial cells. Combination of RGD with these endothelial cell-selective biomolecules did not elicit a strong adhesion phenotype but rather one characteristic of migrating cells.

摘要

为了研究如何调控生物材料表面特定的内皮细胞图案化及反应,开发并验证了用于特定细胞图案化的生物活性微阵列。这些微阵列由低污染表面制成,可防止非特异性细胞黏附,并通过向细胞受体呈现特定配体在已知的特定位置承载生物活性分子。将生物活性分子阵列(RGD、REDV和SVVYGLR序列以及血管内皮生长因子(VEGF))固定在羧甲基葡聚糖低污染表面,并使其与人内皮细胞和成纤维细胞接触,以筛选生物活性斑点分子组成对细胞黏附的影响。仅内皮细胞对与REDV或SVVYGLR序列共固定的RGD肽敏感:它们导致细胞铺展减少和肌动蛋白应力纤维丧失。RGD与VEGF共固定还导致内皮细胞中肌动蛋白丝和焦点的重组。RGD与这些内皮细胞选择性生物分子的组合并未引发强烈的黏附表型,而是引发了迁移细胞的一种特征性表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索