伸长、增殖和迁移可区分内皮细胞表型并决定毛细血管的出芽。
Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting.
作者信息
Qutub Amina A, Popel Aleksander S
机构信息
Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA.
出版信息
BMC Syst Biol. 2009 Jan 26;3:13. doi: 10.1186/1752-0509-3-13.
BACKGROUND
Angiogenesis, the growth of capillaries from preexisting blood vessels, has been extensively studied experimentally over the past thirty years. Molecular insights from these studies have lead to therapies for cancer, macular degeneration and ischemia. In parallel, mathematical models of angiogenesis have helped characterize a broader view of capillary network formation and have suggested new directions for experimental pursuit. We developed a computational model that bridges the gap between these two perspectives, and addresses a remaining question in angiogenic sprouting: how do the processes of endothelial cell elongation, migration and proliferation contribute to vessel formation?
RESULTS
We present a multiscale systems model that closely simulates the mechanisms underlying sprouting at the onset of angiogenesis. Designed by agent-based programming, the model uses logical rules to guide the behavior of individual endothelial cells and segments of cells. The activation, proliferation, and movement of these cells lead to capillary growth in three dimensions. By this means, a novel capillary network emerges out of combinatorially complex interactions of single cells. Rules and parameter ranges are based on literature data on endothelial cell behavior in vitro. The model is designed generally, and will subsequently be applied to represent species-specific, tissue-specific in vitro and in vivo conditions. Initial results predict tip cell activation, stalk cell development and sprout formation as a function of local vascular endothelial growth factor concentrations and the Delta-like 4 Notch ligand, as it might occur in a three-dimensional in vitro setting. Results demonstrate the differential effects of ligand concentrations, cell movement and proliferation on sprouting and directional persistence.
CONCLUSION
This systems biology model offers a paradigm closely related to biological phenomena and highlights previously unexplored interactions of cell elongation, migration and proliferation as a function of ligand concentration, giving insight into key cellular mechanisms driving angiogenesis.
背景
血管生成,即从已有的血管生长出毛细血管,在过去三十年中已得到广泛的实验研究。这些研究获得的分子层面的见解已促成了针对癌症、黄斑变性和局部缺血的治疗方法。与此同时,血管生成的数学模型有助于更全面地描述毛细血管网络形成的情况,并为实验探索指明了新方向。我们开发了一个计算模型,弥合了这两种观点之间的差距,并解决了血管生成芽生过程中一个尚存的问题:内皮细胞的伸长、迁移和增殖过程如何促进血管形成?
结果
我们提出了一个多尺度系统模型,该模型紧密模拟血管生成开始时芽生背后的机制。该模型通过基于主体的编程设计,使用逻辑规则来指导单个内皮细胞及其细胞片段的行为。这些细胞的激活、增殖和移动导致三维空间中的毛细血管生长。通过这种方式,一个新颖的毛细血管网络从单细胞的组合复杂相互作用中涌现出来。规则和参数范围基于体外内皮细胞行为的文献数据。该模型设计具有通用性,随后将用于表示特定物种、特定组织的体外和体内条件。初步结果预测了尖端细胞激活、茎细胞发育和芽生形成是局部血管内皮生长因子浓度和Delta样4 Notch配体的函数,这可能发生在三维体外环境中。结果表明配体浓度、细胞移动和增殖对芽生和方向持续性的不同影响。
结论
这个系统生物学模型提供了一个与生物学现象密切相关的范例,并突出了细胞伸长、迁移和增殖作为配体浓度函数的先前未被探索的相互作用,深入了解了驱动血管生成的关键细胞机制。