Suppr超能文献

用于人类单核苷酸多态性注释的下一代工具。

Next generation tools for the annotation of human SNPs.

作者信息

Karchin Rachel

机构信息

Biomedical Engineering Department and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 212218, USA.

出版信息

Brief Bioinform. 2009 Jan;10(1):35-52. doi: 10.1093/bib/bbn047.

Abstract

Computational biology has the opportunity to play an important role in the identification of functional single nucleotide polymorphisms (SNPs) discovered in large-scale genotyping studies, ultimately yielding new drug targets and biomarkers. The medical genetics and molecular biology communities are increasingly turning to computational biology methods to prioritize interesting SNPs found in linkage and association studies. Many such methods are now available through web interfaces, but the interested user is confronted with an array of predictive results that are often in disagreement with each other. Many tools today produce results that are difficult to understand without bioinformatics expertise, are biased towards non-synonymous SNPs, and do not necessarily reflect up-to-date versions of their source bioinformatics resources, such as public SNP repositories. Here, I assess the utility of the current generation of webservers; and suggest improvements for the next generation of webservers to better deliver value to medical geneticists and molecular biologists.

摘要

计算生物学有机会在大规模基因分型研究中发现的功能性单核苷酸多态性(SNP)的识别中发挥重要作用,最终产生新的药物靶点和生物标志物。医学遗传学和分子生物学领域越来越多地转向计算生物学方法,以便对连锁和关联研究中发现的有趣SNP进行优先级排序。现在许多这样的方法都可以通过网络界面获得,但感兴趣的用户面临着一系列往往相互矛盾的预测结果。如今,许多工具产生的结果如果没有生物信息学专业知识就很难理解,偏向于非同义SNP,而且不一定反映其源生物信息学资源(如公共SNP储存库)的最新版本。在这里,我评估了当前一代网络服务器的效用;并为下一代网络服务器提出改进建议,以便更好地为医学遗传学家和分子生物学家提供价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验